Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einmalig in Deutschland: Protonentherapie bei Augentumoren

08.08.2003


Augentumoren bedrohen nicht nur das Sehvermögen, sondern sie können auch - wie im Falle des häufigsten Tumores des Augeninneren, dem Aderhautmelanom - das Leben des Patienten bedrohen. Seit 1998 setzt das Team um Prof. Dr. Michael H. Foerster von der Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin (ehemals Universitätsklinikum Benjamin Franklin der Freien Universität Berlin, UKBF), in Kooperation mit dem Hahn-Meitner-Institut die so genannte Protonentherapie ein. Einmalig in Deutschland erlaubt sie eine maßgeschneiderte Therapie durch beschleunigte Teilchen und führt in über neunzig Prozent der Fälle zu einer Zerstörung des Augentumors.




Das maligne Melanom der Aderhaut ist der häufigste primäre bösartige Tumor im Auge. In Deutschland werden jährlich rund 500 bis 600 Neuerkrankungen diagnostiziert. Mit Protonenstrahlen, die aus einem Teilchenbeschleuniger der physikalischen Forschung gewonnen werden, behandeln Augenärzte der Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin unter Leitung von Michael H. Foerster Patienten aus ganz Deutschland und dem Ausland. Diese Behandlungsmethode mit Protonenstrahlen ist in Deutschland einzigartig. Sie erfolgt in enger Zusammenarbeit mit Physikern der Beschleunigeranlage des Hahn-Meitner-Institutes (HMI) unter der Leitung von Dr. Heinrich Homeyer, sowie der Strahlentherapeuten der Charité, Campus Benjamin Franklin unter der Leitung von Prof. Dr. Wolfgang Hinkelbein.



Rund zwei Drittel aller Krebspatienten werden im Verlauf ihrer Krankheit mit Strahlung behandelt. Bislang setzten Mediziner vor allem Gamma- und Elektronenstrahlen ein, doch gewinnt die Behandlung mit Protonenstrahlen weltweit an Bedeutung. Protonen sind positiv geladene Kerne des Wasserstoffatoms. Die Protonentherapie bietet besondere Vorteile bei Tumoren in der Nähe von empfindlichem, gesundem Gewebe, da sie eine hohe Präzision gewährleistet. Das ist für Augentumoren von großer Bedeutung, da der Tumor und die empfindlichen Strukturen des Auges, wie Sehnerv und Netzhaut, dicht nebeneinander liegen. Hier stellt die Protonentherapie eine wesentliche, in der Regel Auge und Sehvermögen erhaltende Therapieform dar, zumal eine medikamentöse Behandlung (Chemotherapie) bei Augentumoren bis heute nicht möglich ist. Zur Bestrahlung von Tumoren im Augeninneren benötigt man Protonen mit der relativ hohen Energie von rund 70 Millionen Elektronenvolt. Solche maßgeschneiderten Teilchenstrahlen lassen sich nur mit großem apparativen Aufwand herstellen.

Bei den Erkrankungen handelt es sich um Tumoren, die intraokular, also im Augeninnern, wachsen. Am häufigsten sind dabei bösartige Melanome, die im Augapfel in der Aderhaut entstehen. Meist sind Menschen im sechsten Lebensjahrzehnt betroffen. Bei etwa einem Drittel der Fälle kann die Protonentherapie entscheidend helfen. Am besten sind die Resultate bei Tumoren mit einem Durchmesser von bis zu 15 Millimetern, die mehr als drei Millimeter vom Sehnerv oder der Stelle des schärfsten Sehens entfernt sind. Es können jedoch auch größere Tumoren erfolgreich behandelt werden: "Um Nebenwirkungen nach der Protonenbestrahlung zu minimieren, haben wir in unserer Augenklinik ein neues operatives Verfahren entwickelt, mit dem große Tumoren nach der Protonenbestrahlung schonend entfernt werden können", sagt Michael H. Foerster. "Die ersten Erfahrungen mit dieser Endoresektion sind viel versprechend."

Wegen der Präzision des Protonenstrahls ist die exakte Positionierung des Patienten von entscheidender Bedeutung. Nach der Diagnose eines Augentumors müssen zunächst dessen Position und Ausdehnung vermessen werden. Dazu werden vom Augenarzt mehrere Markierungsplättchen aus Tantal auf die Lederhaut des erkrankten Auges genäht. Der Arzt legt dann die Form und räumliche Lage des Tumors relativ zu den Tantalplättchen fest. Die Plättchen verursachen in der Regel keinerlei Beschwerden und werden auch nach der Bestrahlung nicht entfernt.

Ein bis zwei Wochen nach dieser ersten Operation beginnt die Behandlung im HMI. In einer ersten Sitzung ohne Protonenbestrahlung werden auf dem Behandlungsstuhl eine Gesichtsmaske und ein Gebissabdruck angefertigt. Die Maske und der "Beißblock" dienen der Fixierung des Patienten auf dem Behandlungsstuhl, der mit einer Genauigkeit von einem Zehntel Millimeter entlang der drei Raumachsen und um zwei Rotationsachsen positioniert werden kann. Danach wird der Patient in die spätere Behandlungsposition gebracht. Um die Blickrichtung des immer noch beweglichen Auges festzulegen, werden mehrere Röntgenaufnahmen mit verschiedenen Blickrichtungen angefertigt, auf denen die Markierungsclips sichtbar werden. Mit ihnen lassen sich Position und Orientierung des Auges exakt vermessen und später mit der Sollposition aus der Bestrahlungsplanung vergleichen. Damit wird die Blickrichtung des Patienten überprüft.

Danach beginnt die Arbeit der Physiker am HMI. Aus den Positionen der Tantalumclips auf den Röntgenaufnahmen in Verbindung mit weiteren diagnostischen Daten wie Ultraschallaufnahmen, CT- und MRT-Schnitten sowie den Daten des Augenarztes wird ein Computermodell des erkrankten Auges errechnet. Das Modell rekonstruiert die Lage des Tumors und berechnet den optimalen Fixierungswinkel für die Bestrahlung. Bevor in der Werkstatt die Messingblenden für die Bestrahlung hergestellt werden können, wird in einer zweiten Sitzung mit dem Patienten einige Tage nach dem ersten Termin kontrolliert, ob der Bestrahlungsplan auch praktisch umsetzbar ist. Dazu wird der Patient auf dem Behandlungsstuhl fixiert und wie für die Bestrahlung positioniert. Dabei werden dem Patienten auch erstmals "Lidhalter" eingesetzt, die ein Blinzeln während der Bestrahlung verhindern und die Augenlider aus dem Protonenstrahl heraushalten. "Der Behandlungsstuhl wird digital gesteuert und kann bis auf 0,1 Millimeter exakt ausgerichtet werden", erzählt der Physiker Dr. Heinz Kluge, der am HMI für die Protonentherapie zuständig ist.

In der folgenden Woche erscheint der Patient täglich zur Bestrahlung im Behandlungsraum des Zyklotrons. Der Patient nimmt auf dem Behandlungsstuhl Platz und seine Haltung wird mit der Sollposition verglichen. Ein vergrößertes Fernsehbild der Pupille des zu bestrahlenden Auges wird auf das Kontrollpult übertragen und die Sollposition des Auges auf dem Bildschirm markiert, um bei einer möglichen Bewegung des Auges den Strahl sofort zu unterbrechen. Das Strahlrohr, aus dem der Protonenstrahl austritt, ist der letzte Strang der Strecke, die der Teilchenstrahl bei seiner Beschleunigung durchläuft. Mit dem Behandlungsstuhl wird der Patient dicht vor die Austrittsöffnung des Strahlrohres gefahren. Die eigentliche fraktionierte Bestrahlung mit einer Dosis von 15 Gray dauert rund 30 Sekunden, während die Vorbereitung zwischen zehn und zwanzig Minuten beansprucht. "Für den Patienten ist die Behandlung nicht belastend", erklärt Foerster. Eine Narkose ist deshalb nicht erforderlich. Zur Behandlung sind in der Regel vier Sitzungen nötig, die innerhalb einer Woche durchgeführt werden. Mit dieser Behandlungstechnik sind in Berlin in den letzten fünf Jahren bereits mehr als 360 Patienten behandelt worden. Die Wahrscheinlichkeit, den Tumor im Auge zu zerstören, liegt bei 94 bis 96 Prozent. Die Wissenschaftler bemühen sich, die Erfolgsrate weiter zu optimieren. Aus diesem Grund wird im Rahmen eines Projektes mit dem Deutschen Krebsforschungszentrums in Heidelberg an einer weiteren Verbesserung der Präzision des Bestrahlungsverfahrens gearbeitet.

Weitere Informationen erteilt:

Prof. Dr. Michael H. Foerster
Augenklinik und Poliklinik der Charité
Universitätsmedizin Berlin
Campus Benjamin Franklin
Tel.: 030 - 8445-2331, -2332
E-Mail: foerster@medizin.fu-berlin.de

Ilka Seer | idw
Weitere Informationen:
http://www.medizin.fu-berlin.de
http://www.hmi.de

Weitere Berichte zu: Augentumor HMI Protonenstrahl Protonentherapie

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Sind Epilepsie-Patienten wetterfühlig?
23.05.2017 | Universitätsklinikum Jena

nachricht Dual-Layer Spektral-CT: Bessere Therapieplanung beim Bauchspeicheldrüsenkrebs
18.05.2017 | Deutsche Röntgengesellschaft e.V.

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten