Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entscheidungen im Gehirn werden sichtbar - Wie Gehirnhälften miteinander kommunizieren

21.07.2003


Wo im Gehirn wird kontrolliert, ob die linke oder rechte Hirnhälfte eine Arbeit erledigen soll? Wo wird festgelegt, welche Hirnregionen eine Aufgabe lösen? Zum ersten Mal konnte der Hirnforscher Prof. Dr. med. Gereon Fink vom Forschungszentrum Jülich und der Neurologischen Klinik des Universitätsklinikums Aachen jetzt diesen Entscheidungsprozess beobachten.



In einem Beitrag für das Wissenschaftsmagazin "Science" (Bd. 301, S. 384, 2003) berichtet Fink gemeinsam mit Kollegen des Forschungszentrums Jülich sowie der Universitäten Düsseldorf, London und Oxford: Eine Struktur im Stirnhirn weist den Hirnhälften die Arbeit zu. Ihre Forschungsergebnisse, so hoffen die Wissenschaftler, werden Patienten helfen, bei denen beispielsweise durch einen Schlaganfall eine Hirnhälfte geschädigt ist.



Nicht der Augenschein zählt, sondern der Auftrag: Was in unserem Gehirn geschieht, wenn wir einen Reiz verarbeiten, hängt vor allem davon ab, was wir mit dieser Information anfangen sollen. So kann der Anblick desselben Wortes mal die rechte, mal die linke Hirnhälfte aktivieren, je nachdem, ob es eine sprachliche Aufgabe zu bewältigen gilt oder ein Problem der räumlichen Wahrnehmung. Das menschliche Gehirn, das äußerlich aus zwei fast spiegelgleichen Hälften besteht, ist asymmetrisch organisiert. Das Sprachvermögen ist gemeinhin links zuhause, räumliche Fähigkeiten dagegen rechts. Wie aber wird die Arbeit im Hirn eingeteilt? Finks Arbeitsgruppe fand jetzt heraus, wie beide Hirnhälften den Umgang miteinander regeln.

Die Hirnforscher baten Versuchspersonen, kurze Hauptwörter zu betrachten, in denen ein Buchstabe rot gefärbt war. Nun erhielten die Teilnehmer unterschiedliche Aufträge: Mal sollten sie angeben, ob das jeweils gezeigte Wort den Buchstaben A enthielt - eine sprachliche Aufgabe also. Ein andermal wurden die Teilnehmer gefragt, ob der rote Buchstabe rechts oder links der Wortmitte stand - hier war die räumliche Wahrnehmung gefordert. Währenddessen beobachteten die Wissenschaftler, welche Bereiche des Gehirns jeweils besonders aktiv waren. Dafür nutzten sie die funktionelle Magnetresonanz-Tomographie (fMRT). Dieses Verfahren misst, wie gut das Hirngewebe mit Sauerstoff versorgt wird, und macht damit diejenigen Bereiche des Hirns sichtbar, die gerade intensiv arbeiten.

Wurde nach dem Buchstaben A gefragt, waren ausschließlich Areale in der linken Hirnhälfte mit der Lösung dieser Aufgabe beschäftigt, darunter auch die so genannte Broca-Region. Ihre Rolle bei der Sprachverarbeitung ist seit langem bekannt. Galt es dagegen, die Position des roten Buchstabens richtig einzuordnen, löste das selbe Wort nur in der rechten Hirnhälfte, speziell im Scheitellappen, Aktivitäten aus.

Die Hirnforscher begnügten sich nicht damit, diese Arbeitsteilung zu beobachten. Sie wollten vor allem wissen, wie das Gehirn die Arbeit der linken oder der rechten Hirnhälfte zuweist. Für diese Managementaufgabe wird eine Kontrollzentrale im Gehirn benötigt, die die Forscher ebenfalls mit Hilfe der funktionellen Magnetresonanz-Tomographie aufspürten. Sie zeigte: Ein Bereich des Stirnhirns, vorderer cingulärer Cortex (anterior cingular cortex, ACC) genannt, entscheidet darüber, ob die linke oder die rechte Hirnhälfte aktiv wird. Dr. Klaas Stephan vom Institut für Medizin des Forschungszentrums Jülich führt aus: "Der linke Teil des ACC arbeitete immer intensiver mit der Sprach-Region der linken Hirnhälfte zusammen, während die Entscheidung zugunsten der Buchstabenerkennung fiel. Im anderen Fall nahm der Einfluss des rechten ACC auf den Scheitellappen der rechten Hirnhälfte zu."

Damit konnten die Forscher zu ersten Mal direkt verfolgen, wie die verschiedenen Regionen des Gehirns miteinander kommunizierten, während sie ein Problem beurteilten und die "zuständigen Sachbearbeiter" ermitteln. "Wir sehen auf diese Weise, wie sich die verschiedenen beteiligten Hirnregionen miteinander unterhalten, und wie sich das "Gespräch" verändert, wenn die Aufgabe wechselt", erläutert Gereon Fink.

Solche Erkenntnisse helfen auch zu verstehen, was im Gehirn von Menschen vorgeht, bei denen, etwa als Folge eines Schlaganfalls, diese Kontrollmechanismen gestört sind. So können Schäden im rechten Scheitellappen dazu führen, dass Patienten eine Hälfte der Welt ignorieren. Sie sehen sie zwar, beachten sie aber nicht - Wissenschaftler sprechen vom "Neglect". Manche Patienten mit Schlaganfällen in der linken Hirnhälfte können dagegen Sprache nicht mehr richtig verstehen - ein Krankheitsbild, das als "Aphasie" bezeichnet wird. In beiden Fällen ist die Verständigung zwischen verschiedenen Hirnregionen beeinträchtigt. Die Jülicher Forscher können nun diese Probleme im Management des Gehirns genauer nachvollziehen - eine Voraussetzung dafür, künftig bessere Therapien zu entwickeln.

Peter Schäfer | idw
Weitere Informationen:
http://www.fz-juelich.de/portal/angebote/pressemitteilungen

Weitere Berichte zu: ACC Hirnforscher Hirnhälfte Scheitellappen Schlaganfall

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics