Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

So kommunizieren Nervenzellen miteinander

26.06.2003


Organisatoren der Informationsübertragung zwischen Nervenzellen identifiziert



Das menschliche Gehirn ist ein Organ enormer Komplexität. Es enthält Milliarden Nervenzellen, von denen jede Zelle an durchschnittlich 1.000 Kontaktstellen mit anderen verknüpft ist. Der Informationsfluss über diese Kontaktstellen stellt die Grundlage allen normalen und krankhaften Verhaltens dar. Göttinger Forscher haben nun entdeckt, wie Nervenzellen die schnelle und exakte Informationsübertragung untereinander verändern können. Die Arbeit aus dem Bereich der biomedizinischen Grundlagenforschung trägt zum Verständnis des Zusammenhangs von Struktur und Funktion neuronaler Verknüpfungen bei und wurde jetzt in der Zeitschrift "nature" (Vol 423, pp 939-948, 26.06.2003) veröffentlicht.

... mehr zu:
»Membran »Nervenzelle »Neurexine »Synapse »Zelle


Nervenzellen - auch Neurone genannt - leiten Signale an ihren langen Fortsätzen, den Axonen, in Form von elektrischen Spannungsveränderungen weiter. An den Kontaktstellen zwischen zwei Nervenzellen ist die elektrische Weiterleitung unterbrochen. Die Membranen der vorgeschalteten und nachgeschalteten Zelle liegen dicht aneinander und ein nur sehr schmaler Spalt trennt die beiden. An diesen Strukturen - den "Synapsen" - erfolgt die Signalübertragung zwischen den Zellen.

"Jede Nervenzelle bildet eine Vielzahl synaptischer Kontakte mit ihren unterschiedlichen Partnerzellen. Damit die Informationsübertragung zwischen den Nervenzellen Sinn ergibt, müssen die Eigenschaften der synaptischen Terminale den nachgeschalteten Nervenzellen angepasst werden," sagt Dr. Markus Missler, Abt. Neuro- und Sinnesphysiologie, Bereich Humanmedizin. Dem Mechanismus dieser Regulation sind er und seine Kollegen Astrid Rohlmann und Weiqi Zhang vom Sonderforschungsbereich 406 der Universität Göttingen -Bereich Humanmedizin, in Zusammenarbeit mit Gunnar Kattenstroth und Kurt Gottmann von der Ruhr-Universität Bochum, und Thomas C. Südhof vom Howard Hughes Medical Institute in Dallas (USA) auf die Spur gekommen.

Die Wissenschaftler untersuchten Mäuse, in denen Neurexine - eine bestimmte Klasse von Zelladhäsionsmolekülen - defekt sind. Zelladhäsionsmoleküle sind Proteine in der Zellmembran, denen bisher hauptsächlich strukturelle Aufgaben zugeschrieben wurden. Neurexine werden in die synaptische Membran der vorgeschalteten Zelle eingelagert, wo sie mit anderen Proteinen wechselwirken und zudem Proteine in der Membran der nachgeschalteten Zelle erkennen können. Es wurde festgestellt, dass in Mäusen mit defekten Neurexinen die Struktur von Synapsen relativ normal, die Übertragung von Nervenimpulsen überraschenderweise jedoch massiv gestört war. Ein so deutlicher Einfluss von neuronalen Zelloberflächenmolekülen auf die Funktion der Synapse wurde hier erstmalig beobachtet, was zur Veröffentlichung der Ergebnisse in der renommierten Wissenschaftszeitschrift Nature beitrug. Aber wie beeinflussen Neurexine die Signalübertragung zwischen den Neuronen?

Es wird schon lange vermutet - konnte aber noch nie in einem Tiermodell nachgewiesen werden - dass Kalziumkanäle bei der Informationsübertragung an Synapsen eine entscheidende Rolle spielen. Die Spannungsveränderung in der präsynaptischen Membran führt nach gegenwärtiger Vorstellung zur Öffnung von Kanälen in dieser Membran, die nur für Kalziumionen durchlässig sind. Der nachfolgende Anstieg der Kalziumkonzentration löst dann einen Prozess aus, der zur Signalübertragung an die nachgeschaltete Zelle führt. Durch verschiedene Untersuchungen konnten die Wissenschaftler den Angriffspunkt der Neurexine in den Mechanismus der Signalübertragung so weit einengen, bis schließlich feststand: Neurexine sind im synaptischen Spalt lokalisiert und beeinflussen die Aktivität der Kalziumkanäle und damit letztlich die Effizienz der neuronalen Informationsübertragung.

Die Forscher sind so der Lösung des Problems nähergekommen wie die Stärke und Dynamik der Signalübertragung an der Vielzahl von Synapsen zwischen den unterschiedlichsten Nervenzellen aufeinander abgestimmt werden. Die untersuchte Klasse von Zelladhäsionsproteinen, die Neurexine, könnte den Kontakt zwischen den Nervenzellen vermitteln und die Eigenschaften der Informationsübertragung durch ihren Einfluss auf die Kalziumkanäle verändern. Hinzu kommt, dass Neurexine in einer Vielzahl leicht verschiedener Varianten auftreten, welche der Erkennung unterschiedlicher Partnerzellen dienen könnten. Sie bilden somit eine molekulare Schnittstelle, an der Neurone die Eigenschaften der neuronalen Signalübertragung auf die Struktur ihrer Verbindungen untereinander anpassen.

Die Forschungsarbeiten sind an drei Stellen durchgeführt worden: Im Rahmen des Sonderforschungsbereichs SFB 406 an der Universität Göttingen im Bereich Humanmedizin, dem Lehrstuhl Zellphysiologie der Universität Bochum and an der University of Texas Southwestern Medical Center, Dallas (USA). Dr. Markus Missler ist gegenwärtig Mitglied des DFG Forschungszentrums Molekularphysiologie des Gehirns (CMPB).

Weitere Informationen:

Georg-August-Universität Göttingen - Bereich Humanmedizin
Dr. Markus Missler
Abt. Neuro- und Sinnesphysiologie
Humboldtallee 23
37073 Göttingen
email: mmissle1@gwdg.de
Tel: + 0551 / 39-12807

Rita Wilp | idw

Weitere Berichte zu: Membran Nervenzelle Neurexine Synapse Zelle

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Gentherapie für seltene Bluterkrankung
18.12.2017 | Medizinische Hochschule Hannover

nachricht Abstoßung von Spenderorganen: Neue Biomarker sollen Komplikationen verhindern
15.12.2017 | Deutsche Herzstiftung e.V./Deutsche Stiftung für Herzforschung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»FLUX-LMDR« will Energieeffizienz von Transformatoren erhöhen

18.12.2017 | Energie und Elektrotechnik

Neues Prüffeld für Fahrzeugtechnik, Elektromobilität und vernetztes Fahren

18.12.2017 | Verkehr Logistik

Internationale Leitlinie der Weltgesundheitsorganisation: Sicher mit Nanomaterialien arbeiten

18.12.2017 | Biowissenschaften Chemie