Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie die Beeinflussung eines Ionenkanals zu Rhythmusstörungen führen kann

05.06.2003


Patienten, deren Herzkranzgefässe verengt sind, sind besonders gefährdet: Erhöhte Belastung, zuviel Stresshormone im Blut können zu lebensbedrohlichen Herzrhythmusstörungen führen, einer Hauptkomplikation der koronaren Herzkrankheit.



Dabei spielen "Ionenkanäle" eine Rolle, winzige Eiweißporen in der Wand der Herzmuskelzellen, die u.a. dafür sorgen, dass sich der Herzmuskel regelmäßig kontrahiert und danach wieder erschlafft. Dr. Christoph Karle und seinem Forschungsteam in der Medizinischen Universitätsklinik Heidelberg (Abteilung Kardiologie, Angiologie und Pulmologie), ist es gelungen, die Funktion eines dieser Ionenkanäle im Herzen aufzuklären. Für diese Arbeit erhält er den Nachwuchswissenschaftlerpreis 2003 der Medizinischen Fakultät Heidelberg, der vom Naturhistorischen-Medizinischen Verein Heidelberg gestiftet wurde. Seine Arbeit könnte einen wichtigen Ansatzpunkt für die Entwicklung neuer Medikamente gegen Herzrhythmusstörungen bieten.



Auf Stress reagiert der Körper mit der Ausschüttung von Hormonen wie Noradrenalin und Adrenalin. Im Herz lösen sie eine Signalkaskade aus, die sich letztlich in den Ionenkanälen der Zellwand niederschlägt. Eine besondere Aufgabe haben Kanäle, durch die Kalium in und aus der Zelle strömen kann. Ist die Muskelkontraktion abgeschlossen, werden sie geöffnet: Durch den Ausstrom von Kalium kann sich die Zelle elektrisch erholen. Veränderungen an diesen Kanälen haben gravierende Folgen: Die Herzzellen sind elektrisch überhitzt, es kann zu Herzrhythmusstörungen und in der Folge sogar zu Herzversagen kommen.

Angeborene Herzrhythmusstörung half den Forschern auf die Sprünge

Eine gefährliche Rhythmusstörung ist die "Kammertachykardie", eine überhöhte Schlagfrequenz der beiden Herzkammern. Betroffen sind u.a. Patienten, die an einem angeborenen langen QT-Syndrom leiden. Bei ihnen ist der Ausstrom von Kaliumionen aus den Herzzellen verlangsamt. Dies ist an einer verlängerten QT-Strecke im EKG zu erkennen, die eine überlange Erregung des Herzmuskels charakterisiert. Plötzliches Herzjagen, Schwindel und Ohnmachtsanfälle sind häufige Beschwerden. Als Ursache konnten molekulare Veränderungen an den Ionenkanälen des Herzens identifiziert werden.

Bislang sind mehrere QT-Syndrome bekannt, die auch Kaliumkanäle betreffen, darunter den Kanal, der durch das sogenannte HERG Protein gebildet wird. Patienten, die unter diesem langen QT-Syndrom leiden, bekommen bei Stress ganz besonders leicht Herzrhythmusstörungen. Dies ist auch der Grund, weshalb gerade HERG untersucht wurde. Der Kanal könnte auch bei anderen stressbedingten Herzrhythmusstörungen, z.B. bei einer koronaren Herzkrankheit, ursächlich beteiligt sein.
Dr. Christoph Karle und seinen Mitarbeitern ist es gelungen die molekularen Schlüsselstellen zu charakterisieren, die für die Regulation des "HERG" Kaliumkanals in Stressituationen von Bedeutung sind. "Durch Messung der Ionenströme an isolierten Herzzellen und den Einsatz hemmender Substanzen konnten wir gezielt in die Signalkaskade eingreifen", erläutert Dr. Karle. Er konnte zeigen, dass weitere Botenmoleküle das Schlüsselmolekül Proteinkinase A aktivieren. "Es gibt das Signal an den HERG Kanal weiter. Der Kanal wird dadurch gehemmt und der Ausstrom von Kaliumionen aus der Herzzelle verlangsamt", erklärt Dr. Karle. Hält die Hemmung an, können sich die Herzzellen nicht mehr erholen. Herzrhythmusstörungen können die Folge sein. Eine gezielte molekulare Veränderung des Kanals verhindert hingegen die Hemmung des Kanals.

Möglicher Ansatzpunkt für die Entwicklung neuer Medikamente

Der Regulationsmechanismus des HERG Kanals gibt den Forschern einen besseren Einblick in die Entstehung von Herzrhythmusstörungen. Die Wissenschaftler vermuten, dass andere Ionenkanäle des Herzens auf ähnliche Wiese reguliert werden. Die Ergebnisse stellen einen Ansatzpunkt zur Entwicklung von Medikamenten dar, die gezielt in den Signalweg eingreifen können und Herzrhythmusstörungen verhindern helfen.

Dr. Annette Tuffs | idw
Weitere Informationen:
http://www.med.uni-heidelberg.de

Weitere Berichte zu: HERG Herzrhythmusstörung Herzzelle Ionenkanal

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics