Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

A new discovery at the Montreal Neurological Institute at McGill University may provide insights into MS

14.05.2003


A new discovery by scientists at the Montreal Neurological Institute at McGill University may provide insights into Multiple Sclerosis. In a study published in the May issue of the Journal of Neuroscience (J. Neuroscience 2003 23: 3735-3744), Dr. Tim Kennedy and colleagues have discovered that a protein called netrin-1 directs the normal movement of the cells that become oligodendrocytes in the developing spinal cord. Oligodendrocytes are the cells that provide critical support for the nerve cells – they make myelin, the electrical insulation of the central nervous system. They are also the cells that degenerate and die in Multiple Sclerosis (MS). Although oligodendrocytes play an essential role in the nervous system, many aspects of their basic cell biology are not well understood, which is one of the reasons why MS is such a mystery. This research finding identifies a fundamental mechanism that directs migrating oligodendrocyte precursor cells. This has implications for understanding demyelinating diseases such as MS, where even a small myelin deficit can lead to functional impairment of the nerve cell.

... mehr zu:
»Neuroscience »Sklerose

An estimated 50,000 people have MS, which is most often diagnosed in young adults. Its devastating effects last a lifetime and may include problems in seeing or speaking, difficulty with balance and coordination, and even paralysis. “Dr. Kennedy’s research will contribute to the growing body of knowledge which is developing new therapies for MS," said Dr. William McIlroy, MS Society of Canada national medical advisor.

"In order to treat a disease in the most effective way possible, it is necessary to understand the manner in which proteins function," said Dr. Alan Bernstein, President of the Canadian Institutes of Health Research. "Dr. Kennedy’s discovery is a vital step in understanding the root causes of MS and will play a role in one day developing an entirely new generation of drugs to combat this condition."


It is widely known that netrins are proteins that guide nerve cell axons to their target in the developing nervous system leading them to their target. In the embryo, this can involve axons travelling long distances. “In addition to this long-range function, last year we reported that netrin-1 may have a short-range function associated with the cell surface that contributes to the maintenance of nerve cell-oligodendrocyte interactions in the mature nervous system. This prompted us to study the possibility that netrin-1 might contribute to oligodendrocyte development,” says Dr. Tim Kennedy, MNI researcher and co-discoverer of netrins.

The researchers showed that netrin acts as a repellent cue for migrating oligodendrocytes- directing them to move away from sources of netrin. “This result was very exciting for us because netrins are ancient signposts in developing nervous systems,” says Dr. Kennedy. “They’ve been pointing axons in the right direction for at least 500 million years. Although 500 million years ago very simple animals did exist -like little worms, oligodendrocytes had not yet evolved. Evolution has been suggested to work like someone who tinkers with bits and pieces to make new things, like pasting together bits and pieces of other pictures to make a new image. In the natural history of oligodendrocyte cell biology, netrin is an example of something that was already there doing other things, that got picked up along the way and applied to a new purpose.”

“Understanding the basic biology of oligodendrocytes is very important for MS. If we can understand what stimulates them to function, then perhaps we can develop new targets for therapy,” explained Dr. Jack Antel, a neurologist at the Montreal Neurological Institute specializing in the research and treatment of MS.

This research was supported by the Canadian Institutes of Health Research (CIHR) and the Multiple Sclerosis Society of Canada.


For further information or to interview Dr. Kennedy, please contact:
Sandra McPherson
Montreal Neurological Institute
3801 University Street
Montreal, QC H3A 2B4

Tel: (514) 398-1902
Fax: (514) 398-8072
Email: sandra.mcpherson@mcgill.ca

Sandra McPherson | McGill University
Weitere Informationen:
http://www.jneurosci.org/cgi/content/abstract/23/9/3735
http://www.mni.mcgill.ca
http://www.mni.mcgill.ca/announce/kennedy03_e.htm

Weitere Berichte zu: Neuroscience Sklerose

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie