Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Modernstes Bestrahlungszentrum zur Tumorbekämpfung in Deutschland

10.04.2003


Mit Strahlen gegen den Krebs - diesen Leitsatz hat sich das Universitätsklinikum Erlangen auf die Fahnen geschrieben: Jetzt öffnet das Klinikum mit dem Novalis Shaped Beam Surgery Center die Pforten für das modernste Bestrahlungszentrum in Deutschland - entwickelt von der BrainLAB AG München und ins Leben gerufen von zwei der fortschrittlichsten Krebsspezialisten: Professor Rolf Sauer und Professor Rudolf Fahlbusch.



In dem neuen Zentrum sollen Krebspatienten mit Hirntumoren und Tumoren in verschiedenen anderen Körperregionen unter Umständen radiochirurgisch, das heißt in einer Sitzung mit einer sehr hohen Dosis, bestrahlt werden.



Die Innovation: Ein neuartiges, röntgenbasiertes Patientenpositionierungssystem ermöglicht eine bis dato unerreichte Genauigkeit bei der Bestrahlung. Patienten können jetzt so behandelt werden, dass nahezu ausschließlich der Tumor mit der gewünschten Strahlendosis getroffen wird. Umliegendes, gesundes Gewebe bleibt weitestgehend verschont.

Mit dieser Technologie können jetzt erstmals auch Tumoren außerhalb des Kopfes, wie Tumoren in der Wirbelsäule, millimetergenau und hochdosiert bestrahlt werden. Patienten profitieren von höherer Präzision bei der Bestrahlung, geringeren Nebenwirkungen und verbesserten klinischen Ergebnissen. Das Klinikum kann durch Novalis mit höherer Sicherheit und Effizienz als bisher behandeln, so dass diese Technologie einer weit größeren Anzahl an Patienten als bisher zur Verfügung gestellt werden kann.

Die Strahlentherapie ist mit der Chirurgie die erfolgreichste und am häufigsten angewandte Behandlungsmethode bei Krebserkrankungen: Strahlentherapie mit heilender oder krankheitslindernder Zielsetzung wird heute bei mindestens der Hälfte aller Krebspatienten eingesetzt. Die beiden Betreiber des neuen Zentrums, Professor Rolf Sauer, Direktor der Universitäts-Strahlenklinik, und Professor Rudolf Fahlbusch, Direktor der Neurochirurgischen Universitätsklinik Erlangen, arbeiten bei der Behandlung ihrer Patienten schon seit vielen Jahren erfolgreich zusammen und setzen dabei fortschrittlichste Techniken ein. Beide Kliniken bringen international anerkannte Expertise aus ihren Fachgebieten ein, um Patienten die weltweit beste Therapie anbieten zu können.

Mit dem Novalis Shaped Beam Surgery Center steht dem Ärzte-Team nun eines der modernsten Verfahren zur Behandlung unterschiedlicher Tumorerkrankungen zur Verfügung. "Derzeit behandeln wir mit Novalis Hirntumoren und Tumoren im Kopf-Hals-Bereich. Mit dem neuen System lassen sich klinische Ergebnisse deutlich verbessern", erläutert Professor Fahlbusch. "Mit Novalis können wir beispielsweise Akustikusneurinome, also Tumoren des Hörnervs, gehörerhaltend therapieren. Darüber hinaus lassen sich mit dem System Angiome, d. h. Blutgerinnsel im Gehirn, inoperable Hypophysentumoren und Hirnmetastasen punktgenau bestrahlen." Voraussichtlich bis Ende April wird das Universitätsklinikum Behandlungsprotokolle für extrakranielle Läsionen wie Tumoren in Wirbelsäule und Lunge entwickeln und damit sein Behandlungsspektrum entscheidend erweitern.

Bei der traditionellen Radiotherapie wird der Tumor in der Regel großflächig bestrahlt, wodurch angrenzendes gesundes Gewebe beeinträchtigt wird. Mit Novalis Shaped Beam Surgery hingegen kann das Erlanger Uniklinikum Tumoren mit höchster Präzision bestrahlen, während die Strahlenbelastung für gesundes Gewebe so gering wie möglich gehalten wird. Dies ist von zentraler Bedeutung, wenn der Tumor radiochirurgisch behandelt wird, d.h. wenn die zur Zerstörung des Tumors benötigte hohe Strahlendosis in einer Sitzung verabreicht wird. Die dafür notwendigen Voraussetzungen schafft die von BrainLAB entwickelte, innovative Positionierungstechnologie. Diese bringt den Tumor des Patienten vor der Bestrahlung automatisch und millimetergenau in die vom Computer errechnete Lage, so dass der Tumor mit bisher unerreichter Präzision bestrahlt werden kann. Somit kann - gefahrlos für gesundes Gewebe - eine deutlich höhere Strahlendosis als bisher im Tumor konzentriert werden, um ihn zu zerstören. Durch eine spezielle Strahlenblende, die sich während der Bestrahlung individuell an den Tumor anpasst, können während der Bestrahlung sogar unregelmäßig geformte Tumoren präzise erfasst werden.

"Hohe Bestrahlungsdosen zeigen erfahrungsgemäß sehr gute Heilungschancen bei lokalisierten Primärtumoren", erklärt Professor Rolf Sauer. "Wir erwarten, dass wir mit diesem Verfahren die Heilungsraten entscheidend verbessern können. Durch das computergesteuerte und vollautomatische Novalis-System können wir zudem die Effizienz und Präzision bei der Behandlung deutlich steigern." Im Unterschied zur Chirurgie - einem offenen Eingriff, der zumeist eine Vollnarkose erfordert - ist die Strahlenbehandlung minimal-invasiv und schmerzfrei. Der Patient kann kurz nach der Behandlung in seinen gewohnten Alltag zurückkehren. Das Universitätsklinikum Erlangen ist das bislang erste Klinikum in Deutschland, das seinen Patienten diese Technologie - und damit den weltweit höchsten Stand der Technik in der Strahlentherapie - anbietet.

Ute Missel | idw
Weitere Informationen:
http://www.uni-erlangen.de

Weitere Berichte zu: Bestrahlung Strahlendosis Strahlentherapie

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Verschwindende Äderchen: Diabetes schädigt kleine Blutgefäße am Herz und erhöht das Infarkt-Risiko
23.03.2017 | Technische Universität München

nachricht Ein Knebel für die Anstandsdame führt zu Chaos in Krebszellen
22.03.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise