Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lernen durch Beobachten: Schlaganfallpatienten könnten von Videoverfahren profitieren

09.04.2003


Neues Forschungsprojekt der Lübecker Klinik für Neurologie befasst sich mit der Funktion spezieller Nervenzellen.


Mit der funktionellen Kernspintomographie (fMRT) ist es den Lübecker Wissenschaftlern inzwischen gelungen nachzuweisen, dass unterschiedliche Hirnareale aktiviert werden, wenn ein Gegenüber entweder Bein (blau), Hand (grün) oder Mund (rot) bewegt.

Schlaganfallpatienten mit Lähmungen an den Extremitäten können ganz offensichtlich durch Beobachten von Arm- oder Beinbewegungen das Wiedererlernen von verlorenen Fertigkeiten beschleunigen. Ersten Untersuchungen deutscher und italienischer Neurologen zufolge gelang es den Betroffenen während der Rehabilitation deutlich schneller, verloren gegangene Bewegungsmuster erneut zu erlernen, wenn sie diese bei anderen beobachteten, als wenn sie sie ausschließlich trainierten.

Verantwortlich für dieses Phänomen sind allem Anschein nach spezialisierte Nervenzellen, die so genannten Spiegelneurone. Neueste Forschungen mit bildgebenden Verfahren ergaben, dass die Zellen bereits bei der optischen oder akustischen Wahrnehmung von Bewegungen, die jemand anders ausführt, aktiv werden. Durch die Beobachtung von Bewegungen werden im Nervensystem Bewegungsmuster abgespeichert. Dank dieser neurologischen Lernprozesse können allem Anschein nach durch den Schlaganfall eingebüßte Funktionen wieder aktiviert werden.

Ein Team um Priv.-Doz. Dr. Ferdinand Binkofski aus der Lübecker Universitätsklinik für Neurologie (Direktor Prof. Dr. Detlef Kömpf) will nun zusammen mit Dr. Giovanni Buccino aus dem italienischen Parma bei zunächst 50 Schlaganfallpatienten eine videogestützte Methode erproben. Dabei werden den Patienten verschiedene Bewegungsabläufe regelmäßig vorgeführt. Diese Untersuchungen haben zunächst experimentellen Charakter. Bestätigen sich die ersten, viel versprechenden Ergebnisse, soll das Verfahren in größeren Patientengruppen erprobt werden.

Die Untersuchungen sind Teil eines dreijährigen Forschungsprojektes, das den Wissenschaftlern aus Lübeck und Parma jetzt von der renommierten Volkswagen-Stiftung bewilligt wurde. Die Stiftung fördert das Projekt mit 504 800 Euro. Der Entscheid für Lübeck steht in unmittelbarem Zusammenhang mit dem neuen Forschungsverbund "NeuroImage Nord", in dem sich Hirnforscher aus den Universitä-ten Lübeck, Hamburg und Kiel zusammen geschlossen haben. Dieser Verbund wird sowohl vom Bundesministerium für Bildung und Forschung (BMBF) als auch von der Deutschen Forschungsgemeinschaft (DFG) mit mehreren Millionen Euro gefördert. Mit der Einrichtung von NeuroImage Nord ist auch Dr. Binkofski 2002 nach Lübeck gekommen: Der 40jährige Neurowissenschaftler hat die Universität Düsseldorf und das Forschungszentrum Jülich für eine Stiftungsprofessur in Lübeck verlassen. "Die wissenschaftlichen Voraussetzungen und das Arbeitsumfeld hier sind optimal; der ständige Austausch mit den Kollegen in Hamburg und Kiel ermöglicht Forschungsarbeit auf höchstem Niveau", begeistert sich Binkofski.

Spiegelneurone wurden vor einigen Jahren von den Professoren Vittorio Gallese und Giacomo Rizzolatti aus Parma mehr oder minder zufällig entdeckt. Bei Hirnuntersuchungen mit Schweinsaffen (Makakken) stellten sie fest, dass einige Nervenzellen im Stirnhirn nicht nur dann in Erregung gerieten, wenn sie eine bestimmte eigene Tätigkeit ausführten. Die gleichen Nervenzellen feuerten ihre Signale auch, wenn die Affen den Versuchsleiter bei der Ausführung von den gleichen Tätigkeiten beobachteten. So feuerten diese Zellen sowohl wenn der Affe nach einer Erdnuss griff, als auch wenn der Versuchsleiter eine Greifbewegung nach der Nuss ausführte.

Nach weiteren Experimenten stand fest: Die Tiere konnten sogar die Absichten des Versuchsleiters erahnen; sie wussten, welche Bewegungen er mit welchem Gegenstand ausführen würde. Selbst Geräusche reichten aus, um typische Bewegungen zuzuordnen: Ganz gleich, ob die Affen Nüsse selbst knackten oder nur das spezifische Knirschen einer brechenden Nuss hörten - die Aktivitätsstärke der Neurone war in allen Fällen ähnlich hoch.

Auch beim Menschen wird aufgrund der neusten Ergebnisse aus der funktionellen Bildgebung die Existenz von Spiegelneuronen immer wahrscheinlicher. Die ersten Hinweise auf die Existenz solcher Zellen beim Menschen fanden sich im so genannten Broca-Zentrum (Sprechzentrum im Hirn, das auch für die Gestik verantwortlich zeichnet); inzwischen wird diese besondere Art von Nervenzellen an verschiedenen Stellen vermutet. "Wir gehen mittlerweile von einem komplexen Spiegelneuronensystem aus, das sich im menschlichen Gehirn befindet", erklärt Dr. Binkofski.

Zwar sind Bedeutung und Funktion der Spiegelneurone noch nicht eindeutig geklärt, doch wissen die Forscher, dass diese Zellen wesentlich komplexer arbeiten als jene, die ausschließlich fürs Sehen oder Hören zuständig sind. Spiegelneurone steuern Wahrnehmung und Ausführung von Bewegungen; sie verknüpfen ganz offensichtlich Beobachtungen oder Geräusche mit der eigentlichen Durchführung von Aktionen. Sie spielen eine große Rolle beim Verstehen - und damit auch beim Erlernen - von Bewegungsabläufen. Einige Forscher gehen so weit, dass sie das Entstehen von Sprache und menschlicher Kultur auf Spiegelneurone zurück führen.

Spiegelneurone werden früh aktiv: Kleinkinder imitieren oft Mimik und Gestik ihres Gegenübers. Blinzeln, Grimassen schneiden, Zunge herausstrecken - das Gesicht von Vater oder Mutter ist wie ein Spiegel für die Verhaltensweise des Kindes. Dieses System, das die Forscher Resonanzverhalten nennen und das auf der Aktivierung von Nervenzellen beruht, ist bei jedem Menschen verankert: Kratzt der Chef sich während einer Besprechung am Kopf oder verschränkt die Arme, führen einige Angestellte die gleiche Bewegung wenig später ebenfalls aus. "Dies geschieht natürlich unbewusst und wird von jedem unterdrückt, sobald er es bemerkt. Aber grundsätzlich kennen wir alle dieses Resonanzverhalten - warum sonst wirken etwa Gähnen oder Lachen so ansteckend?", sagt Dr. Binkofski.

Auch beim Erlernen von Fertigkeiten sind die Spiegelneurone wahrscheinlich von großer Bedeutung: So steigen manche Kinder aufs Rad und fahren los, ohne es jemals geübt zu haben. Sie haben ihren Altersgenossen ganz einfach nur zugesehen und dabei mental gelernt, wie man Rad fährt. Diese Funktion bleibt auch im Erwachsenenalter erhalten: Golfspieler etwa stellen sich ihren nächsten Schlag intensiv vor. Auch das hilft, motorische Fähigkeiten zu erlangen bzw. zu verbessern.

Untersucht wird die neuronale Aktivität vor allem mit modernen bildgebenden Verfahren. Von herausragender Bedeutung ist hier die funktionelle Kernspintomographie (fMRT). Bewegungen, Gedanken und Vorstellung steigern die Hirnaktivität und damit auch den Stoffwechsel. Mit der fMRT kann dies ohne Röntgenstrahlen dreidimensional exakt dargestellt werden. Ein besonders leistungsstarkes so genanntes 3-Tesla-Gerät wurde für den Forschungsverbund NeuroImage Nord für 2,5 Millionen Euro angeschafft und im Hamburger Uniklinikum Eppendorf (UKE) aufgebaut. In Kombination mit elektrischen Ableitungsverfahren wie dem EEG oder Stimulationsmethoden wie der transkraniellen Magnetstimulation lassen sich Ort und Zeit der Aktivität von Spiegelneuronen genau bestimmen.

So ist es den Lübecker Wissenschaftlern inzwischen gelungen nachzuweisen, dass unterschiedliche Hirnareale aktiviert werden, wenn ein Gegenüber entweder Bein, Arm oder Mund bewegt. "Auch haben wir festgestellt, dass die neuronale Aktivität in bestimmten Hirnarealen des Probanden stärker ausgeprägt ist, wenn der Beobachtete nach einem konkreten Gegenstand, etwa einem Stift, greift, als wenn er ins Leere fasst", erläutert der Neurowissenschaftler. Dies, so Binkofski, ein deutliches Indiz, dass Spiegelneurone nicht nur Visuelles erfassen, sondern gleichzeitig auch in den Analyseprozess im Hirn eingebunden sind.

Welche Konsequenzen die neue Forschungsergebnisse für Opfer von Schlaganfällen haben und ob sich daraus neue Therapieoptionen ergeben, muss jetzt intensiver geprüft werden. In wenigen Wochen beginnt eine Untersuchung mit 50 Patienten. Ihnen werden regelmäßig spezielle Videos gezeigt, auf denen Bewegungsübungen wie "Arm heben" oder "Bein strecken" zu sehen sind. Binkofski: "Wir hoffen, dass durch wiederholtes Sehen der Bewegungen gespeicherte Muster abgerufen und schon verloren geglaubte Bewegungsabläufe wieder aktiviert werden." Bei ersten Patienten, denen die Videosequenzen vorgespielt wurden, hat sich diese Hoffnung bewahrheitet: Allein durchs Beobachten - und den daraus resultierenden neurona-len Aktivitäten - konnte der Erfolg der Rehabilitation in kürzerer Zeit erreicht werden.

Zu große Erwartungen dürfe man in das experimentelle Verfahren jedoch noch nicht setzen, schränkte Dr. Binkofski ein; erst müssten weitere Studien entsprechende Ergebnisse bringen und bestätigen. Auch sei die Methode für Patienten mit stark geschädigten Nervenbahnen kaum geeignet, frühere Bewegungsmuster wieder zu erlernen. Für Patienten mit weniger stark ausgeprägten Schlaganfällen könnte sich aus dem Verfahren jedoch eine weitere Therapieoption entwickeln, hofft der Neurologe.

Rüdiger Labahn | idw
Weitere Informationen:
http://www.mu-luebeck.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Verschwindende Äderchen: Diabetes schädigt kleine Blutgefäße am Herz und erhöht das Infarkt-Risiko
23.03.2017 | Technische Universität München

nachricht Ein Knebel für die Anstandsdame führt zu Chaos in Krebszellen
22.03.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen