Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Sensor spürt winzige Mengen Traubenzucker auf

25.03.2003


Tübinger Wissenschaftler berichten im Journal of Biological Chemistry



Die Gewebe der vielzelligen Lebewesen von der Pflanze bis zum Menschen benötigen ständigen Nachschub an Zucker, am besten in Form von Traubenzucker, der Glukose. Ein Mensch muss nicht ständig Traubenzucker essen, um die Zellen zu versorgen, denn der Körper kann Glukose auch aus anderen Stoffen gewinnen. Glukose kann in der Zelle besonders schnell verbrannt werden, die Zelle gewinnt Energie. Die Zellen müssen den Glukosespiegel in einem engen Rahmen halten, auch wenn der Glukosegehalt des Blutes schwankt, weil der Körper etwa durch sportliche Leistungen mehr Zucker verbraucht oder durch eine Mahlzeit größere Mengen aufnimmt. Der Glukosespiegel in der Zelle hängt dabei einerseits vom Transport der Moleküle in die Zelle und aus ihr heraus sowie andererseits vom Stoffwechsel ab, durch den Glukose ab- oder umgebaut wird. Wie grundlegend wichtig die Regulation des Zuckerspiegels ist, zeigt die Volkskrankheit Diabetes, die unbehandelt zahlreiche gesundheitliche Probleme nach sich ziehen kann. Die Tübinger Forscher Marcus Fehr, Dr. Sylvie Lalonde, Ida Lager und Michael W. Wolff haben nun unter der Leitung von Prof. Wolf Frommer am Zentrum für Molekularbiologie der Pflanzen (ZMBP) der Universität Tübingen einen Sensor entwickelt und in tierische Zellen eingebracht, mit dem sich in der lebenden Zelle Aufnahme, Verteilung und Stoffwechsel von Glukose in Echtzeit verfolgen lassen. Die Forschungsergebnisse werden jetzt von der Fachzeitschrift Journal of Biological Chemistry veröffentlicht und sind online unter www.jbc.org nachzulesen (Version im pdf-Format: www.jbc.org/cgi/reprint/M301333200v1.pdf).

... mehr zu:
»Glukose »Protein »Zelle


Die Forschergruppe um Prof. Wolf Frommer hatte im vergangenen Jahr bereits einen Zellsensor für Maltose, ein anderes Zuckermolekül, entwickelt (siehe Pressemitteilung vom 9. Juli 2002). Der neue Sensortyp für Glukose ist jedoch in Forschung und Anwendung von weitaus größerer Bedeutung, da Glukose universell vor allem auch von Zellen der Säugetiere als Energielieferant genutzt wird. Um zu erforschen, was sich auf dem Niveau einer einzelnen Zelle abspielt, welche Stoffe gebildet, herein- oder heraustransportiert werden, mussten die Forscher die Zellen bisher meistens fixieren oder bestimmte Stoffe mit Markern versehen. Dabei wird häufig die Zellstruktur zerstört und bei Messungen lässt sich kaum feststellen, welche Effekte auch im intakten Gewebe auftreten und welche erst durch die Beschädigung oder Zerstörung der Zelle entstanden sind. Die neu entwickelten Sensoren für bestimmte Zuckermoleküle lassen sich dagegen in lebenden Zellen einsetzen und eröffnen den Forschern die Möglichkeit, sehr schnell auch winzige Konzentrationsänderungen im Nanobereich festzustellen.

Um einen zuverlässigen Sensor für Glukose oder einen anderen bestimmten Stoff zu erhalten, brauchen die Forscher mehrere Zutaten: Zunächst ein Molekül, ein Protein, das spezifisch möglichst nur diesen einen Stoff bindet. Daran muss sich eine Signalkette anschließen, an deren Ende ein gut messbares Signal steht - die Tübinger Forscher nutzen dafür die Intensität von Fluoreszenzlicht. Als spezifisches Molekül, das Glukose bindet, haben die Wissenschaftler ein Protein aus Bakterien (periplasmic glucose/galactose binding protein, GGBP) gewählt. Sie haben das Glukose-Bindungsprotein gentechnisch verändert, um es für den physiologischen Messbereich des Zuckers in Zellen besonders empfindlich zu machen. An das Glukose-Bindungsprotein werden zwei fluoreszierende Proteine angehängt. Eines davon kann durch blaues Licht angeregt werden und überträgt die Resonanzenergie an den zweiten Proteinanhang, der in einer anderen Farbe leuchtet. Das Licht wird gemessen. Wenn sich nun ein Glukosemolekül an das Bindungsprotein heftet, verändert dieses seine Form. Die beiden fluoreszierenden Proteine an seinen Enden werden dabei auseinandergedrückt. Als Folge nimmt die Energieübertragung ab. So lässt sich indirekt bestimmen, wie viele Glucosemoleküle in einem bestimmten Zeitraum gebunden werden.

Das Glukose-Bindungsprotein und das Maltose-Bindungsprotein, das die Forscher im vergangenen Jahr zur Entwicklung eines Maltose-Sensors genutzt hatten, zeigen große Unterschiede in der Zusammensetzung ihrer Bausteine, der Aminosäuren. Die Bindungsproteine sind evolutionsgeschichtlich nicht eng verwandt, zeigen aber eine ähnliche dreidimensionale Form. Prof. Frommer und seine Mitarbeiter werten es als großen Erfolg, dass sich zwei so unterschiedliche Proteine für den gleichen Sensortyp nutzen lassen. Sie gehen davon aus, dass sich durch ähnliche Verfahren auch Sensoren für weitere Zuckersorten, Aminosäuren und zum Beispiel auch für die Botenstoffe, die Informationen zwischen Nervenzellen vermitteln, herstellen lassen. Um den neuen Nanosensor zur Messung der Glukosekonzentration in lebenden Zellen zu testen, haben die Wissenschaftler Zellkulturen der Niere von Grünen Meerkatzen verwendet. Sie gehen jedoch davon aus, dass sich der Sensor ebenso in anderen Zellen von Säugetieren einsetzen lässt, auch beim Menschen. Der neue Sensor ist daher zum Beispiel für die medizinische Erforschung des Diabetes interessant.


Nähere Informationen:

Prof. Wolf B. Frommer
Zentrum für Molekularbiologie der Pflanzen (ZMBP)
Auf der Morgenstelle 1
72076 Tübingen
Tel. 07071 - 2972605
Fax 07071 - 293287
E-Mail: frommer@ZMBP.uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de

Weitere Berichte zu: Glukose Protein Zelle

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Gefäßregeneration: Wie sich Wunden schließen
12.12.2017 | Medizinische Hochschule Hannover

nachricht Mit 3D-Zellkulturen gegen Krebsresistenzen
11.12.2017 | Universität Bern

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik