Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Erkenntnisse bei der Erforschung von neurodegenerative Erkrankungen wie Multiple Sklerose

14.03.2003


Max-Planck-Wissenschaftler decken besondere Bedeutung von Myelin-bildenden Gliazellen für den Erhalt von Nervenbahnen im Gehirn auf - Bedeutung auch für Multiple Sklerose



Die Einbettung der Nervenbahnen (Axone) in eine Isolierschicht aus Myelin ist eine wichtige Voraussetzung für die Reizweiterleitung innerhalb des Nervensystems. Im zentralen Nervensystem übernehmen diese Aufgabe die Oligodendrozyten, die Axone mit ihren Ausläufern in mehreren Lagen umwickeln und so eine kompakte Isolierschicht bilden. Wird diese Schutzschicht beschädigt, entstehen neurologische Erkrankungen wie z.B. die Multiple Sklerose (MS). Wissenschaftler des Max-Planck-Instituts für experimentelle Medizin in Göttingen ist es jetzt gelungen, genetisch nachzuweisen, dass Oligodendrozyten nicht nur für die Produktion des Myelins, sondern auch für das Überleben der Nervenbahnen selbst verantwortlich sind. Die Forscher berichten in der jüngsten Ausgabe der renommierten Fachzeitschrift "Nature Genetics", dass neurodegenerative Erkrankungen, bei denen es zu einer Schädigung der Axone kommt, auch das Resultat eines subtilen Defekts in den Myelin-bildenden Zellen (Oligodendrozyten bzw. Schwann Zellen) sein können, auch wenn es gar nicht zu einer Schädigung der Myelin-Schicht kommt (nature genetics, März 2003).



Die Multiple Sklerose ist die häufigste neurologische Erkrankung bei jungen Menschen. Laut Schätzungen des "World Health Report 2000" sind weltweit mehr als 2 Millionen Menschen an MS erkrankt, darunter etwa 450.000 Europäer und 400.000 Nordamerikaner. Nach Schätzungen der Deutschen Multiple Sklerose Gesellschaft sind in Deutschland derzeit 130.000 Menschen von MS betroffen. Das mittlere Risiko beträgt in Nordeuropa 1:1000. Diagnostiziert wird die Krankheit vor allem bei 20- bis 40-jährigen. Bei Kindern und Älteren kommt sie eher selten vor. Hauptangriffspunkt im Krankheitsgeschehen der Multiplen Sklerose sind die Axone und die Myelinschicht.

Jede Nervenzelle steht mit unzähligen anderen Nervenzellen in Kontakt - hauptsächlich über lange Fortsätze, die man Axone nennt. Die Axone sind von einer Myelinschicht, der Markscheide, umgeben, die im zentralen Nervensystem von den Oligodendrozyten und im peripheren Nervensystem von den Schwannschen Zellen gebildet wird. Schwannsche Zellen und Oligodendrozyten sind Gliazellen: Neurone und Oligodendrozyten stehen ein Leben lang in engem räumlichen Kontakt. Ist die Kommunikation zwischen ihnen gestört, hat das fatale Folgen. Bei Patienten mit Multipler Sklerose (MS) ist der Verlust der "weißen Substanz" auch mit einem Verlust von Nervenfasern (Axonen) verbunden. Dies weist auf eine komplexe Interaktion zwischen Neuronen/Axonen und Oligodendrozyten hin, über deren Mechanismen jedoch nur wenig bekannt ist. Welche Rolle spielt der Entzündungsprozess und welche Rolle die Gliazellen, wenn Axone verloren gehen?

Um einer Antwort auf diese Frage näher zu kommen, haben Wissenschaftler des Max-Planck-Instituts für Experimentelle Medizin (Göttingen) bei Mäusen ein Gen inaktiviert, das für ein gliales Enzym kodiert. Dieses als 2´3´-zyklische 3´-Phosphodiesterase (CNP) bezeichnete Protein ist spezifisch für myelinisierende Gliazellen und wird nicht in Neuronen exprimiert. Nach der experimentellen Inaktivierung des CNP-Gens entwickelten sich die Mutanten völlig normal zu erwachsenen Mäusen, ohne abnormales Verhalten und mit normaler Myelin-Produktion. Doch etwa vier Monate später begannen die Mäuse eine Reihe von neurologischen Störungen zu zeigen, wie Bewegungsprobleme, Krämpfe und eine verkrampfte Haltung. Sie zeigten dabei abnorme axonale Schwellungen im Gehirn und neurodegenerative Veränderungen. Im Alter von etwa sieben Monaten führt die Neurodegeneration sogar zum Hydrocephalus und zum vorzeitigen Tod. Der Aufbau der Myelinscheide selbst war in dem gesamten Krankheitsgeschehen nicht merklich betroffen.

Damit ist den Max-Planck-Wissenschaftlern gelungen, zwei Funktionen von Oligodendrozyten genetisch zu entkoppeln, die Generierung von Myelin einerseits und die Erhaltung des Axons andererseits,. Dieser Befund ist auch von großer Bedeutung für humane Myelin-Erkrankungen. Bei der entzündlichen MS wird zum Beispiel der fokale Verlust der weißen Substanz von einem Verlust an Axonen begleitet, und die Degeneration von Axonen ist in erster Linie für die anhaltenden Behinderungen der Patienten verantwortlich. Jedoch ist der genaue Zusammenhang zwischen Entzündung, Demyelinisierung und Degeneration der Axone noch unklar. Die Mäuse mit der Mutation des CNP-Gens zeigen nun, dass der Verlust ihrer Axone - bei Abwesenheit einer Entzündungsreaktion - allein durch die Fehlfunktion von Oligodendrozyten verursacht wird. Diese Beobachtungen sprechen gegen die Annahme, dass bei der Multiplen Sklerose lediglich die Entzündungsreaktion zu einer Schädigung der Axone führt; vielmehr führen auch Fehlfunktionen bei den Myelin-bildenden Zellen mit hoher Wahrscheinlichkeit sekundär zum axonalen Verlust.

Weiter werfen die Forschungsergebnisse die klinisch bedeutsame Möglichkeit auf, dass eine Reihe von neurodegenerativen Erkrankungen beim Menschen auf Defekten in den Myelin-bildenden Zellen beruhen, auch wenn es keine offensichtlichen Myelin-Schädigungen gibt. So können genetische Defekte oder andere Faktoren, die primär die Myelin-produzierenden Zellen betreffen, indirekt auch für eine Reihe anderer neurodegenerativer Erkrankungen verantwortlich sein. "Unsere Forschungsergebnisse zeigen, dass wir bei der Suche nach den molekularen Ursachen neurodegenerativer Krankheiten und der Entwicklung neuer Therapien künftig auch die Oligodendrozyten und die Schwannzellen einbeziehen müssen," sagt Prof. Klaus-Armin Nave, "denn grundsätzlich ist jetzt klar, dass die Myelin-bildenden Zellen essentiell für das Überleben der Axone sind."

Jetzt stellen sich der Forschung zwei Herausforderungen: Erstens die genauen Mechanismen aufzuklären, mit Hilfe derer die Myelin-bildenden Zellen die Axone unterstützen, und zweitens herauszufinden, welchen Anteil die durch Glia-Zellen verursachten Störungen an den Axonen an neurologischen Krankheitsbildern insgesamt haben.

Weitere Informationen erhalten Sie von:

Prof. Klaus-Armin Nave
Max-Planck-Institut für experimentelle Medizin, Göttingen
Tel.: 0551 - 3899-757
Fax: 0551 - 3899-758
E-Mail: nave@em.mpg.de

Prof. Klaus-Armin Nave | Max Planck Gesellschaft

Weitere Berichte zu: Axon Gliazelle Multiple Sklerose Nervensystem Oligodendrozyt Sklerose

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Revolutionär: Ein Algensaft deckt täglichen Vitamin-B12-Bedarf
23.04.2018 | Hochschule für nachhaltige Entwicklung Eberswalde

nachricht Eine Teleskopschiene für Nanomaschinen
20.04.2018 | Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wie zerfallen kleinste Bleiteilchen?

23.04.2018 | Physik Astronomie

Technologien aus der Zukunft und wie das Fraunhofer INT diese identifiziert

23.04.2018 | HANNOVER MESSE

Bäume mit Grasflächen mildern Sommerhitze

23.04.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics