Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

I-Wear lernt laufen - Aktueller Forschungsbedarf

14.02.2003


I-Wear, Smart Clothes, Wearable Electronics. Viele Begriffe für dieselbe Vision: Bekleidung soll den Menschen dank ihrer intelligenten Eigenschaften in absehbarer Zeit bei den verschiedensten Aktivitäten und in möglichst vielen Lebensbereichen als unbemerkt arbeitender Partner aktiv unterstützten.



Eines der größten Probleme, das die Wissenschaftler gegenwärtig noch lösen müssen, ist die optimale Integration der intelligenten Bausteine in die Bekleidung. Um vom Verbraucher angenommen zu werden, muss nämlich nicht nur der Preis der Produkte stimmen, sondern vor allem auch ihr Aussehen und der Tragekomfort. Optimal konstruierte I-Wear bietet durch die eingebaute Elektronik auf Schritt und Tritt eine Vielzahl von zusätzlichen Funktionen, ist dabei aber äußerlich völlig unauffällig und genauso bequem zu tragen und zu pflegen wie herkömmliche Kleidung.

Welche Anforderungen marktreife Produkte darüber hinaus erfüllen müssen und wie vielfältig die Anwendungsmöglichkeiten für intelligente Bekleidungssysteme sind, verdeutlicht der Medizinbereich am besten.


Die Diagnose, Therapie und Betreuung von Patienten ist momentan das wichtigste Segment für den praktischen Einsatz von I-Wear. Entsprechend ausgerüstete Kleidungsstücke könnten in der Intensiv-Medizin oder bei der Betreuung von Reha-Patienten beispielsweise rund um die Uhr relevante Körperdaten überwachen und bei Fehlfunktionen Alarm schlagen. Auch das Leben von Diabetes-Patienten wäre um einiges unbeschwerter, wenn Textilien mit integrierten Mikrospritzen sie bei Unterzucker nicht nur warnen, sondern ihnen auch gleich die benötigte Insulin-Dosis verabreichen könnten.

Intelligent ist die Kleidung der Zukunft in dreifacher Hinsicht: Mit Hilfe von Sensoren kann sie bestimmte Daten wie Körperfunktionen (EKG, Blutdruck, Pulsfrequenz, Atmung, Temperatur etc.) oder Umwelteinflüsse (z. B. Luftdruck, Feuchtigkeit, Ozon) erfassen. Eingebaute Prozessoren speichern diese Informationen und verarbeiten sie mittels geeigneter Software weiter. Aktuatoren schlagen schließlich auf der Grundlage der vom Rechner interpretierten Daten kontrollierte Aktionen vor bzw. führen sie unmittelbar aus.

Zusätzlich zu diesen drei Kernbestandteilen erlaubt eine Reihe von Benutzerschnittstellen wie Tastaturen, Displays, Datenbrillen, Mikrofone oder Lautsprecher dem Träger von Wearable Electronics, aktiv mit seiner Umwelt zu kommunizieren.

Wichtigste, weil unentbehrliche Komponente von I-Wear, ist allerdings die Energieversorgung der elektronischen Bauteile. Forschung ist hier sowohl bei der Energiegewinnung (z. B. durch flexible Solarzellen oder aus der Körperwärme bzw. Bewegungsenergie des Trägers) als auch bei der Energieeinsparung und Energiespeicherung notwendig. Die sperrigen Akkus unserer Tage sind für ergonomisch geschnittene Kleidung untauglich.

Modellstudien für Textil basierte Tastaturen oder Displays wurden bereits von einigen Herstellern präsentiert. In Zukunft wird es darum gehen, diese zu optimieren und vor allem innovative Lösungen für die Verbindung der elektronischen Bauteile untereinander zu finden. Leitfähige Textilfasern wären aus Produktionsgründen ideal, Polymere oder Glasfasern sind aber ebenfalls mögliche Alternativen.

Auch Stoff integrierte Sensoren sind zwar prinzipiell schon realisierbar, doch im Augenblick noch nicht produktreif. Ebenfalls weiter geforscht werden muss, um ausreichend kleine und unauffällig integrierbare Prozessorhardware und geeignete Mikro-Aktuatoren herstellen zu können.

Voraussetzung dafür, dass intelligente Bekleidungssysteme sinnvoll funktionieren, ist zu
guter letzt jedoch das reibungslose Ineinandergreifen der beteiligten Schnittstellen. Eine problemlose Ortung via GPS muss ebenso gewährleistet sein, wie die Datenübertragung per Mobilfunknetz sowie die Anbindung an erforderliche lokale Netzwerke und die persönlich genutzten Geräte in unmittelbarer Nähe.

Damit Wearable Electronics sich längerfristig erfolgreich im Markt etablieren können, müssen nicht nur zahlreiche technischen Detailfragen gelöst werden, sondern auch schnellstmöglich Pionier-Anwendungen gefunden werden, die bei den Textil- und Bekleidungsherstellern die nötige Initialzündung auslösen, um bewusst auf die neuen Technologien zu setzen. Dazu sind sowohl neuartige Produktionsstrukturen und unkonventionelle Entwicklungsallianzen als auch völlig neue Vermarktungsstrategien notwendig. Als vielseitiger Serviceanbieter könnten die Hohensteiner Institute potentiellen Kooperationspartnern zukünftig nicht nur in Forschung und Prüfung, sondern grundsätzlich auch als Marketing-Dienstleister zur Seite stehen.

Nähere Informationen zum Thema I-Wear erhalten Sie bei Bernhard Schroth, Leiter der Stabsstelle Innovationsstrategien, Tel. 07143 271-506, E-Mail b.schroth@hohenstein.de.

Britta Gortan | idw

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie