Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biomedizintechnik: Neues Labor für Neurotherapie und Elektrodiagnostik

16.12.2002


Gesichtsfelddiagnostik


Neurofeedbacktherapie


Nach Sanierung und umfangreicher Neuausstattung hat das Institut für Biomedizinische Technik und Informatik der TU Ilmenau sein Elektrophysiologisches Labor in Betrieb genommen. Bearbeitet werden attraktive Forschungsprojekte mit anwendungsorientierten Zielstellungen für Opthalmologie, Neurologie und Neuropsychologie; zu den Schwerpunkten zählen die Neurotherapie und die Elektrodiagnostik des visuellen Systems.


Mit Brain Computer Interfaces (BCI) bezeichnet man Systeme (Geräte und Verfahren), die auf der Basis der Erfassung und Analyse von Hirnsignalen eine Verbindung bzw. einen Kommunikationskanal zwischen dem menschlichen Gehirn und einem Computer herstellen können.

Ein wichtige Applikation des Brain Computer Interface ist die Neurotherapie. Sie ist ein wissenschaftlich fundiertes Verfahren der Verhaltenstherapie und der Verhaltensmedizin, mit dessen Hilfe normalerweise unbewusst ablaufende physiologische Prozesse im Gehirn durch Rückmeldung in Form von steuerbaren Bildern, Tönen oder Filmen wahrnehmbar gemacht und somit Vorgänge im Gehirn gezielt beeinflusst werden. Auf dieser Basis kann ein gezieltes Training zur Korrektur von pathologisch veränderten Signalen, welche mit dem konkreten Zustand korrelieren, durchgeführt und in vielen Fällen ein sehr positives therapeutisches Resultat erzielt werden. Die Wirksamkeit der Methode ist u.a. an Epileptikern, Schmerz- und Streßpatienten und hyperaktiven Kindern nachgewiesen.


Die Forschungsgruppe "NeuroCybernetics" am Institut für Biomedizinische Technik und Informatik der TU Ilmenau arbeitet seit 1996 an dieser Thematik in enger Zusammenarbeit mit Prof. Birbaumer, Universität Tübingen, der neurologischen Fachpraxis von Prof. Müller aus Ilmenau und der Neurologischen Abteilung der Zentralklinik Bad Berka. Die erarbeitete methodisch-technische Lösung - ein flexibles Gerätesystem auf der Basis einer zentralen und einer portablen Einheit - wird bereits mit Erfolg für das Training insbesondere bei Epilepsiepatienten eingesetzt.

Weitere Applikationen des Brain Copmuter Interfaces wie z.B. die Ansteuerung der Klang- und Farblichtzusammensetzung eines interaktiven Entspannungsraumes sind bereits in Arbeit.

Elektrodiagnostik des visuellen Systems

Veränderungen in den visuellen Wahrnehmungsfähigkeiten können Einschränkungen im beruflichen Alltag und im gesellschaftlichen Leben bedeuten. Mit neuartigen Untersuchungsmethoden, wie z.B. der Gesichtsfelduntersuchung (Perimetrie), ist es möglich, Ausfälle und Einengungen des Gesichtsfeldes frühzeitig zu erkennen. Elektrodiagnostische Verfahren bieten hierbei die Möglichkeit, ein objektives Abbild der Funktion der Netzhaut und der gesamten Sehbahn des Patienten zu erstellen. Mit Hilfe der berührungslosen Lichtstimulation an verschiedenen Orten des Gesichtsfeldes des Patienten können am Auge oder am Hinterkopf über dem visuellen Zentrum des Gehirns elektrische Signale (Hirnströme), die durch die Stimulation ausgelöst wurden, erfasst werden.

Durch geeignete Methoden der Signalverarbeitung gelingt es, eine objektive, d.h. eine von der Mitarbeit des Patienten unabhängige Aussage über die Funktion des jeweils stimulierten Netzhautareals zu treffen. Das Institut für Biomedizinische Technik und Informatik der TU Ilmenau weist in enger Kooperation mit medizinischen Partnern (Augenklinik des Klinikums Erfurt, Augenklinik der Friedrich-Schiller-Universität Jena) eine jahrelange Tradition auf dem Forschungsgebiet der objektiven Perimetrie auf. Neueste Untersuchungen bestärken den Einsatz elektrodiagnostischer Methoden in der Augenheilkunde. Im Rahmen des vom BMBF geförderten Kompetenzzentrums "OphthalmoInnovation Thüringen" und der vom TMWFK geförderten Projekte wird intensiv an der Entwicklung neuer, objektiver Methoden zur Funktionsdiagnostik des Sehens gearbeitet.

Kontakt/Information:
TU Ilmenau, Institut für Biomedizinische Technik und Informatik
Prof. Günter Henning
Tel. 03677 69-2860/-2861
e-mail: guenter.henning@tu-ilmenau.de

Wilfried Nax M.A. | idw
Weitere Informationen:
http://www-bmti.tu-ilmenau.de/ncrg

Weitere Berichte zu: Elektrodiagnostik Neurotherapie

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neurorehabilitation nach Schlaganfall: Innovative Therapieansätze nutzen Plastizität des Gehirns
25.09.2017 | Deutsche Gesellschaft für Neurologie e.V.

nachricht Die Parkinson-Krankheit verstehen – und stoppen: aktuelle Fortschritte
25.09.2017 | Deutsche Gesellschaft für Neurologie e.V.

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

Junge Physiologen Tagen in Jena

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

25.09.2017 | Messenachrichten

Fraunhofer ISE steigert Weltrekord für multikristalline Siliciumsolarzelle auf 22,3 Prozent

25.09.2017 | Energie und Elektrotechnik

Die Parkinson-Krankheit verstehen – und stoppen: aktuelle Fortschritte

25.09.2017 | Medizin Gesundheit