"Treibstoff" für das geschwächte Herz

Keine volle Schlagkraft bei Mangel an S100A1-Protein

Heidelberger Wissenschaftler haben ein Protein entdeckt, das die Schlagkraft des Herzens erhöht. Dessen Rhythmus verändert sich dabei nicht. Die Entdeckung des essenziellen „Treibstoffes“ machten Wissenschaftler der Medizinischen Universitätsklinik Heidelberg bei ihrer Suche nach Ursachen der Herzmuskelschwäche. Demzufolge schlägt bei Personen, die zu wenig des so genannten S100A1-Proteins im Herzmuskel besitzen, das Organ nicht mit voller Kraft. Die Entdeckung stellt eine Gentherapie, bei der das Gen für S100A1 aktiviert oder in die Herzmuskelzelle eingeschleust wird, in Aussicht. Dafür sind aber noch weitere wissenschaftliche Untersuchungen erforderlich.

Bei einer Herzmuskelschwäche, auch Kardiomyopathie, ist das Herz nicht mehr in der Lage, Blut mit der notwendigen Kraft in den Körper zu pumpen und alle Gewebe ausreichend mit Sauerstoff zu versorgen. Geschwächte Herzen können durch die Gabe von Stresshormonen, zum Beispiel Adrenalin, vorübergehend mehr Schlagkraft erlangen. Bei gesunden Menschen sind diese Hormone in der Lage, die Leistungsfähigkeit des Herzens und damit des gesamten Körpers bei Bedarf zu steigern. In einer Stresssituation wird jedoch nicht nur die Kraft, sondern auch die Schlagfrequenz des Herzens erhöht. Bei erkrankten Herzen geht dies mit einer Häufung schwerwiegender Rhythmusstörungen einher, die lebensbedrohlich sein können.

An der Kardiologischen Abteilung der Medizinischen Universitätsklinik Heidelberg haben Forscher unter der Leitung von Andrew Remppis entdeckt, dass es einen alternativen, von Stresshormonen unabhängigen Weg gibt, mit dem die Kraft des Herzmuskels kontrolliert wird. Dabei spielt das Calcium-bindende Protein S100A1 eine entscheidende Rolle. S100A1 wird vorwiegend in Herzmuskelzellen gebildet und ist innerhalb der Herzmuskelzelle mit Zellbestandteilen vergesellschaftet, die von zentraler Bedeutung für die Kontraktion des Herzmuskels sind. Über die Funktionsweise dieses Proteins im Herzmuskel war bislang wenig bekannt.

Die Wissenschaftler vermuten, dass die im Herzmuskel nachzuweisende Konzentration von S100A1 direkt mit der Herzfunktion im Einklang steht. Den Beweis für diese Hypothese brachten Experimente an Herzmuskelzellen und künstlichen Herzmuskelgeweben. Die Heidelberger Forscher kurbelten mit gentechnischen Methoden die Produktion des Proteins an und konnten so eine deutliche Steigerung der Kontraktionskraft erzielen. Die S100A1-bedingte Kraftzunahme beruht auf einem bisher nicht vollständig aufgeklärten Mechanismus. Ergebnisse belegen jedoch, dass S100A1 im entscheidenden Maße die Calcium-Ströme der Herzmuskelzelle beeinflusst, die selbst wiederum auf molekularer Ebene die Funktion des Herzmuskels regulieren. Durch diesen alternativen Weg wird nur die Kraft, nicht aber die Frequenz des Herzschlags gesteigert. Dennoch bleibt die Empfindlichkeit für Stresshormone erhalten, so dass neben einer gesteigerten Ruhefunktion des Herzens bei Bedarf eine weitere Leitungssteigerung möglich ist.

Media Contact

Sandra Standhartinger pressetext.deutschland

Weitere Informationen:

http://www.uni-heidelberg.de

Alle Nachrichten aus der Kategorie: Medizin Gesundheit

Dieser Fachbereich fasst die Vielzahl der medizinischen Fachrichtungen aus dem Bereich der Humanmedizin zusammen.

Unter anderem finden Sie hier Berichte aus den Teilbereichen: Anästhesiologie, Anatomie, Chirurgie, Humangenetik, Hygiene und Umweltmedizin, Innere Medizin, Neurologie, Pharmakologie, Physiologie, Urologie oder Zahnmedizin.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer