Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Möglicher Ansatz für eine Krebstherapie: Neues Kontrollelement entdeckt

07.10.2002


Eine Zelle in einem frühen Mitosestadium, in dem sich die Chromosomen (blau) in der Mitte zwischen den Zellpolen ansammeln. Die Mikrotubuli (grün) des Kernspindelapparates beginnen, an die Kinetochoren der Chromosomen zu binden. Hec1 (rot) ist eine Komponente des "Spindel-Checkpoints" und an den Kinetochoren lokalisiert (Maßstab entspricht 10µm).

Foto: Silvia Martin-Lluesma, Max-Planck-Institut für Biochemie, Martinsried


Checkpoints bei der Zellteilung


Pro Sekunde ereignen sich im menschlichen Organismus mehrere Millionen Zellteilungen. Diese schier unglaubliche Zahl verdeutlicht, wie wichtig es für den Organismus ist, einen reibungslosen Ablauf dieses Prozesses zu gewährleisten. In allen Lebewesen verfügen Zellen daher über entsprechende Kontrollmechanismen im Rahmen der Zellteilung. Werden diese Kontrollmechanismen außer Kraft gesetzt, so kommt es häufig zur Tumorbildung. Wissenschaftlern vom Max-Planck-Institut für Biochemie ist es jetzt gelungen, ein Kontrollelement zu identifizieren, das integrativer Bestandteil des so genannten "Spindel-Checkpoints" ist. Wird das Protein, von den Wissenschaftlern Hec1 genannt, zusammen mit anderen Kontrollelementen inaktiviert, so kommt es zu dramatischen Fehlern bei der Zellteilung. Die Forscher um Prof. Erich A. Nigg haben ihre Ergebnisse jetzt in Science (27. September 2002) veröffentlicht.

Ein Mensch besteht aus rund 100.000 Milliarden Zellen. Sie alle sind durch Teilung aus einer einzigen befruchteten Eizelle hervorgegangen. Viele dieser Zellen haben nur eine kurze Lebensdauer und müssen ständig ersetzt werden: So werden im menschlichen Körper jede Sekunde rund drei Millionen Blutzellen neu gebildet. Ohne kontrollierte Zellteilung, die so genannten Mitose, wäre das nicht möglich. Während der Mitose muss die gesamte genetische Information, die DNA, zu gleichen Teilen an die Tochterzellen weitergegeben werden. Dabei muss gewährleistet sein, dass jede der beiden neu entstehenden Zellen nur eine einzige Kopie von jedem der 23 menschlichen Chromosomenpaare erhält. Um dies zu erreichen, wird zu Beginn der Mitose der so genannte Kernspindelapparat aufgebaut, der aus einem Netzwerk an Fäden, den so genannten Mikrotubuli, besteht. Mikrotubuli sind hochgradig dynamische Strukturen: Durch Hinzufügen oder Entfernen der sie aufbauenden Einzelbausteine, der Tubuline, können die Einzelfäden wachsen oder schrumpfen. Das Umschalten zwischen diesen beiden Zuständen ist ein rein stochastischer Prozess, der aber bei der Zellorganisation eine ganz entscheidende Rolle spielt. Nur mit Hilfe der Mikrotubuli können die Chromosomenhälften (auch Schwesterchromatiden genannt) bei der Zellteilung voneinander getrennt werden; dabei bewegen sie sich zu den entgegengesetzten Zellpolen und werden so auf die zwei sich bildenden Tochterzellen verteilt. Sind einzelne Chromatiden nicht gebunden, so kommt es zu einer ungleichmäßigen Verteilung, was fatale Folgen für den Organismus haben kann. Um derartige Fehler zu vermeiden, verfügt die Zelle über ein entsprechendes Kontrollsystem.


Es ist der so genannte "Spindel-Checkpoint": Er verzögert die Trennung der Schwesterchromatiden solange bis sie alle mit Mikrotubuli verknüpft sind. In den vergangenen Jahren konnten zahlreiche "Checkpoint"-Komponenten in ganz unterschiedlichen Organismen identifiziert werden - sie alle sind im Bereich der Kinetochore lokalisiert. Hierbei handelt es sich um spezifische Andockstrukturen, die u. a. die Mikrotubuli einfangen und stabilisieren. Erst die erfolgreiche Verknüpfung des letzten Kinetochors mit Mikrotubuli führt, so vermuten die Wissenschaftler, zum Erlöschen des blockierenden "Spindel-Checkpoint"-Signals und zur Freigabe des weiteren Mitoseablaufs.

Die Max-Planck-Wissenschaftler Silvia Martin-Lluesma, Volker Stucke und Erich A. Nigg haben neue Einblicke in die Funktionsweise des "Spindel-Checkpoints" in menschlichen Zellen gewonnen. Sie konnten zeigen, dass ein Protein, Hec1 genannt, für die Verknüpfung bestimmter Enzyme, wie der Mps1 Kinase, und anderer Proteinkomplexe (MAD1/MAD2) mit den Kinetochoren notwendig ist. Das Fehlen dieses Proteins verhindert die Ansammlung der Chromosomen in der Mitte zwischen den Zellpolen und verursacht damit eine dauerhafte Aktivierung des "Spindel-Checkpoints", d.h. die Zelle verharrt in einem bestimmten Mitosestadium und der weitere Ablauf der Mitose ist zunächst unterbrochen. Das Fehlen von Hec1 zusammen mit MAD2 führt sogar zu einem katastrophalen Ausstieg aus dem gesamten Mitoseprogramm. Diese Erkenntnis, zusammen mit der Hypothese, dass in vielen Krebszellen vermutlich der "Spindel-Checkpoint" in seiner Funktion beeinträchtigt ist, macht Hec1 zu einem attraktiven Ansatzpunkt (die Forscher sprechen von einem medizinischen Target), um ganz gezielt jene Zellen zu entfernen, die Defekte im "Spindel-Checkpoint" aufweisen. Das könnte, so die Ansicht der Forscher, ein ganz neuer Ansatz für eine Krebstherapie sein.

Prof. Dr. Erich A. Nigg
Abteilung für Zellbiologie
Max-Planck-Institut für Biochemie
Am Klopferspitz 18a
82152 Martinsried
E-Mail. nigg@biochem.mpg.de

| Max-Planck-Gesellschaft

Weitere Berichte zu: Kontrollelement Mikrotubulus Mitose Organismus Zellteilung

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von Hefe für Demenzerkrankungen lernen

22.02.2018 | Biowissenschaften Chemie

Sektorenkopplung: Die Energiesysteme wachsen zusammen

22.02.2018 | Seminare Workshops

Die Entschlüsselung der Struktur des Huntingtin Proteins

22.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics