Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mainzer Forschergruppe soll bahnbrechende Methoden zur Untersuchung der Lunge weiterentwickeln

12.09.2002


DFG setzt interdisziplinäre Forschergruppe ein - Helium-3 als Kontrastmittel liefert detailgetreue Bilder - Bessere Therapie für Patienten erwartet

"Gut, dann bitte durch die Nase atmen." Im Hintergrund ist das Atemgeräusch der Patientin über das Beatmungsgerät zu hören. "Mit dem nächsten Atemzug anhalten: Jetzt!" Das Atemgeräusch setzt aus, bis wieder ein Kommando ertönt: "Fertig - und weiteratmen." Die Patientin trägt eine Atemmaske und folgt den Anweisungen genau. Sie hat sich als Testperson an der Universitätsklinik Mainz zur Verfügung gestellt und erhofft sich von einer neuen Untersuchungsmethode Aufschluss über ihre Lungenerkrankung. Dabei atmet sie zu einem exakt bestimmten Zeitpunkt Helium-Gas ein, das hier als Kontrastmittel dient. Während herkömmliche Verfahren wie z.B. Röntgen nur das Lungengewebe abbilden, kann mit Helium erstmals die Verteilung des Atemgases in der Lunge beobachtet werden: der Bildschirm zeigt, wie das Gas durch die Luftröhre in die Lunge strömt und bis in die kleinsten Verästelungen der Bronchien gelangt.

Die neue radiologische Methode gilt als vielversprechend und soll zu einem Routineverfahren für Lungenuntersuchungen weiterentwickelt werden. Dazu hat die Deutsche Forschungsgemeinschaft (DFG) seit August an der Johannes Gutenberg-Universität Mainz eine interdisziplinäre Forschergruppe aus Medizinern und Naturwissenschaftlern eingesetzt. Die DFG unterstützt die Gruppe unter der Führung der diagnostischen Radiologie mit Prof. Manfred Thelen als Sprecher zunächst für drei Jahre mit zwei Millionen Euro. Eine Verlängerung um drei Jahre ist möglich.

"Die Funktion der Lunge ist noch nicht besonders gut erforscht", erklärt der Radiologe Dr. Hans-Ulrich Kauczor. Das soll sich nun ändern: Die Mainzer Wissenschaftler wollen die komplexe Funktion der menschlichen Lunge aufdecken und dabei vor allem den Gasaustausch genauestens untersuchen. "Bei vielen Lungenerkrankungen sind Belüftung und Durchblutung der Lunge nicht richtig aufeinander abgestimmt, weshalb zu wenig Sauerstoff aufgenommen wird", erläutert Kauczor, der in der Forschergruppe für die Koordination und die Projekte zur Verteilung der Einatemluft zuständig ist. Diese Störungen zu erkennen und ihnen möglicherweise vorzubeugen wäre ein großer Schritt in der Diagnostik und Prävention.

Buchstäblich Licht in das Dunkel bringt dabei die Untersuchung der Lunge mit Hilfe der Magnetresonanztomographie (MR) nach Einatmung von hochpolarisiertem Helium-3. Der Aufbau dieses Verfahrens gilt als herausragende Leistung der Mainzer Forscher und die Johannes Gutenberg-Universität zählt auf diesem Gebiet zu den weltweit führenden Einrichtungen. Das Isotop Helium-3 kommt in der Luft nur äußerst selten vor mit einer Konzentration von 13 ppm. Die Physiker greifen daher auf Helium-3 zurück, das als Nebenprodukt in der Kernwaffenproduktion bzw. bei deren Abbau anfällt. Durch Polarisation mit Laserlicht werden die Kerne der Helium-3-Atome möglichst einheitlich ausgerichtet: die hohe Polarisationsrate von über 60 Prozent gibt ein ausreichend starkes Signal für die medizinische Bildgebung mittels MR. "Wir werden durch die Helium-3-MR exaktere Informationen über die Belüftung und Durchblutung der Lunge bekommen und dadurch die Therapien für Patienten verbessern können", prognostiziert Dr. Kauczor.

Zuvor werden noch zahlreiche Patientenuntersuchungen am Klinikum erfolgen, bis das Verfahren zur Routine ausgereift ist. Parallel dazu werden andere Methoden zur Erforschung der Lungenfunktionen mit Hilfe der herkömmlichen Magnetresonanztomographie, der Positronenemissionstomographie (PET) und der Computertomographie (CT) eingesetzt und neue Erkenntnisse über die Belüftungs- und Durchblutungsverhältnisse der Lunge liefern. 13 Patienten haben bisher als Testpersonen für die laufende klinische Studie mit Helium-3 auf Kommando ein- und ausgeatmet. "Hervorragende Bilder", so der begleitende Arzt Dr. Sebastian Ley konnten an die Kollegen von der Pneumologie weitergegeben werden. Mit den Daten von weiteren 67 Patienten soll die erste Auswertung der Ergebnisse Ende 2004 erfolgen. Regionale Störungen der Verteilung der Einatemluft werden erstmals so untersucht, dass die Wirkung von Medikamenten direkt sichtbar gemacht werden kann.


Hinweis:

  • Zur Grundlagenforschung und Anwendung von polarisiertem Helium-3 veranstaltet das Institut für Physik der Johannes Gutenberg-Universität vom 8. bis 13. September eine internationale Konferenz "Helion02" in Oppenheim.
  • Die ersten Ergebnisse der "PHIL"-Studie zur Helium-3 MR, die von der Europäischen Kommission gefördert wird, werden am 13. September im Rahmen des 3. Mainzer fMRI-Symposiums des interdisziplinären Arbeitskreises funktionelle Magnetresonanztomographie in Mainz vorgestellt.

Kontakt und Informationen:
Klinik und Poliklinik für Radiologie
Johannes Gutenberg-Universität Mainz
Prof. Dr. Manfred Thelen
PD Dr. Hans-Ulrich Kauczor
Tel. 06131/17-2267 (Mo-Do von 9-11 Uhr)
Fax 06131/17-6633
E-Mail: info-helium@mail.uni-mainz.de

Petra Giegerich | idw

Weitere Berichte zu: Lunge Magnetresonanztomographie

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Schwere Infektionen bei Kindern auch in der Schweiz verbreitet
26.07.2017 | Universitätsspital Bern

nachricht Neue statistische Verfahren zur Überprüfung von Arzneimittel-Generika
25.07.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops