Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Handbewegungen aus nicht-invasiven Hirnsignalen vorhersagbar

10.04.2008
Wissenschaftler aus Freiburg und Tübingen eröffnen neue Wege zur Steuerung von Prothesen und Computern durch Gehirnaktivität

"Brain Machine Interface" (BMI) sind Technologien, die es erlauben, mit Signalen aus dem Gehirn Computer oder Prothesen zu steuern. Wissenschaftler hoffen, dass schwerstgelähmte Patienten mit diesen Methoden in Zukunft künstliche Gliedmaßen mit ihren Gedanken steuern können wie einen eigenen Körperteil.

Grundsätzlich unterscheidet man invasive und nicht-invasive BMI-Technologien - je nachdem, ob die neuronale Aktivität mit feinen Elektroden abgeleitet wird, die in das Gehirn implantiert werden müssen oder mit Sensoren, die auf der Kopfhaut angebracht werden.

Nicht-invasive Technologien haben den offensichtlichen Vorteil, dass sie wesentlich leichter und nahezu risikofrei zu handhaben sind. Dafür haben sie den entscheidenden Nachteil der deutlich geringeren räumlichen Auflösung. Gemeinsam ist es Freiburger und Tübinger Forschern nun dennoch gelungen, ein Bewegungssignal aus der Großhirnrinde nicht-invasiv abzuleiten, welches bisher invasiven BMIs vorbehalten war.

... mehr zu:
»BMI »Prothese

Die Arbeit der Wissenschaftler um Carsten Mehring (Bernstein Zentrum für Computational Neuroscience und Universität Freiburg) wurde in einer aktuellen Ausgabe der Zeitschrift "Journal of Neuroscience" veröffentlicht.

Invasive und nicht-invasive BMIs unterscheiden sich nicht nur in der technischen Vorgehensweise, sondern auch darin, auf welcher räumlichen Ebene neuronale Signale zur Steuerung von Bewegungen abgegriffen werden. Bei nicht-invasiven Methoden wird die Gehirnaktivität durch die knöcherne Schädeldecke gemessen, man erhält ein diffuses Bild, wie bei einem Blick durch eine Milchglasscheibe.

Typischerweise werden bei dieser Technologie daher Gehirnsignale verwendet, die von großen Neuronengruppen erzeugt werden. Patienten oder Probanden müssen beispielsweise durch intensives Training lernen, willentlich bestimmte elektrische Spannungsschwankungen in der Hirnrinde hervorzurufen, die dann zur Steuerung eines Cursors auf einem Bildschirm übersetzt werden. Invasive Technologien hingegen erlauben es, mit implantierten Elektroden die Aktivität von einzelnen Nervenzellen und kleineren Neuronengruppen direkt aus dem motorischen Cortex abzuleiten - der Hirnregion, die wesentlich für die Durchführung willkürlicher Bewegungen zuständig ist.

Den Wissenschaftlern aus Freiburg und Tübingen ist es nun erstmals gelungen, auch mit nicht-invasiven Methoden spezifische Signale der Bewegungssteuerung direkt aus dem motorischen Cortex auszulesen. Mit Hilfe der Magnetoenzephalographie (MEG) und der Elektroenzephalographie (EEG) konnten sie allein aus der Gehirnaktivität ablesen, in welche von vier Richtungen ein Proband seine Hand bewegt.

Mit der EEG werden Spannungsveränderungen an der Kopfoberfläche gemessen, die durch die elektrischen Ströme aktiver Nervenzellen verursacht werden, mit der MEG werden magnetische Signale registriert, die durch diese Ströme entstehen. Gegenüber bisheriger nicht-invasiver Verfahren hat der Ansatz der Wissenschaftler um Mehring einen entscheidenden Vorteil: die Steuerung einer Prothese oder eines Cursors würde ganz intuitiv wie bei natürlichen Handbewegungen erfolgen und somit möglicherweise deutlich weniger Training erfordern.

Im Rahmen einer Folgestudie führen die Forscher nun Versuche mit gesunden Probanden durch, bei denen dieser neue Ansatz zur Ansteuerung eines Computer mit Hilfe nicht-invasiver Gehirnsignale umgesetzt werden soll. Die Wissenschaftler weisen allerdings auch darauf hin, dass die Genauigkeit eines solchen Systems nicht der invasiver Systeme entsprechen wird. Basierend auf den neuen Forschungsergebnissen könnte es jedoch möglich sein einen Teil der Vorteile dieses direkten und natürlichen Ansatzes zur Prothesen- und Cursorkontrolle zu nutzen ohne den hohen Risiken einer Sensorenimplantation ausgesetzt zu sein.

Originalveröffentlichung:
Waldert, S., Preissl, H., Demandt, E., Braun, C., Birbaumer, N., Aertsen, A. & Mehring, C. (2008).
Hand movement direction decoded from MEG and EEG. J Neurosci. 28(4):1000-8.
doi:10.1523/JNEUROSCI.5171-07.2008
Kontakt:
Dr. Carsten Mehring
Institut für Biologie I &
Bernsteinzentrum für Computational Neuroscience
Albert-Ludwigs-Universität Freiburg
Hauptstr.1, 79104 Freiburg
Tel.: ++49-(0)761-2032543
E-mail: mehring@biologie.uni-freiburg.de
Stephan Waldert
Institut für Biologie I &
Bernsteinzentrum für Computational Neuroscience
Albert-Ludwigs-Universität Freiburg
Hauptstr.1, 79104 Freiburg
Tel.: ++49-(0)761-2032911
E-mail: waldert@bccn.uni-freiburg.de
Die Bernstein Zentren für Computational Neuroscience in Berlin, Freiburg, Göttingen und München werden vom Bundesministerium für Bildung und Forschung (BMBF) gefördert.

Katrin Weigmann | idw
Weitere Informationen:
http://www.bmi.uni-freiburg.de
http://www.bernstein-zentren.de
http://www.mp.uni-tuebingen.de

Weitere Berichte zu: BMI Prothese

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz gegen Gastritis
10.08.2017 | Medizinische Hochschule Hannover

nachricht Wenn Schimmelpilze das Auge zerstören
10.08.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie