Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Handbewegungen aus nicht-invasiven Hirnsignalen vorhersagbar

10.04.2008
Wissenschaftler aus Freiburg und Tübingen eröffnen neue Wege zur Steuerung von Prothesen und Computern durch Gehirnaktivität

"Brain Machine Interface" (BMI) sind Technologien, die es erlauben, mit Signalen aus dem Gehirn Computer oder Prothesen zu steuern. Wissenschaftler hoffen, dass schwerstgelähmte Patienten mit diesen Methoden in Zukunft künstliche Gliedmaßen mit ihren Gedanken steuern können wie einen eigenen Körperteil.

Grundsätzlich unterscheidet man invasive und nicht-invasive BMI-Technologien - je nachdem, ob die neuronale Aktivität mit feinen Elektroden abgeleitet wird, die in das Gehirn implantiert werden müssen oder mit Sensoren, die auf der Kopfhaut angebracht werden.

Nicht-invasive Technologien haben den offensichtlichen Vorteil, dass sie wesentlich leichter und nahezu risikofrei zu handhaben sind. Dafür haben sie den entscheidenden Nachteil der deutlich geringeren räumlichen Auflösung. Gemeinsam ist es Freiburger und Tübinger Forschern nun dennoch gelungen, ein Bewegungssignal aus der Großhirnrinde nicht-invasiv abzuleiten, welches bisher invasiven BMIs vorbehalten war.

... mehr zu:
»BMI »Prothese

Die Arbeit der Wissenschaftler um Carsten Mehring (Bernstein Zentrum für Computational Neuroscience und Universität Freiburg) wurde in einer aktuellen Ausgabe der Zeitschrift "Journal of Neuroscience" veröffentlicht.

Invasive und nicht-invasive BMIs unterscheiden sich nicht nur in der technischen Vorgehensweise, sondern auch darin, auf welcher räumlichen Ebene neuronale Signale zur Steuerung von Bewegungen abgegriffen werden. Bei nicht-invasiven Methoden wird die Gehirnaktivität durch die knöcherne Schädeldecke gemessen, man erhält ein diffuses Bild, wie bei einem Blick durch eine Milchglasscheibe.

Typischerweise werden bei dieser Technologie daher Gehirnsignale verwendet, die von großen Neuronengruppen erzeugt werden. Patienten oder Probanden müssen beispielsweise durch intensives Training lernen, willentlich bestimmte elektrische Spannungsschwankungen in der Hirnrinde hervorzurufen, die dann zur Steuerung eines Cursors auf einem Bildschirm übersetzt werden. Invasive Technologien hingegen erlauben es, mit implantierten Elektroden die Aktivität von einzelnen Nervenzellen und kleineren Neuronengruppen direkt aus dem motorischen Cortex abzuleiten - der Hirnregion, die wesentlich für die Durchführung willkürlicher Bewegungen zuständig ist.

Den Wissenschaftlern aus Freiburg und Tübingen ist es nun erstmals gelungen, auch mit nicht-invasiven Methoden spezifische Signale der Bewegungssteuerung direkt aus dem motorischen Cortex auszulesen. Mit Hilfe der Magnetoenzephalographie (MEG) und der Elektroenzephalographie (EEG) konnten sie allein aus der Gehirnaktivität ablesen, in welche von vier Richtungen ein Proband seine Hand bewegt.

Mit der EEG werden Spannungsveränderungen an der Kopfoberfläche gemessen, die durch die elektrischen Ströme aktiver Nervenzellen verursacht werden, mit der MEG werden magnetische Signale registriert, die durch diese Ströme entstehen. Gegenüber bisheriger nicht-invasiver Verfahren hat der Ansatz der Wissenschaftler um Mehring einen entscheidenden Vorteil: die Steuerung einer Prothese oder eines Cursors würde ganz intuitiv wie bei natürlichen Handbewegungen erfolgen und somit möglicherweise deutlich weniger Training erfordern.

Im Rahmen einer Folgestudie führen die Forscher nun Versuche mit gesunden Probanden durch, bei denen dieser neue Ansatz zur Ansteuerung eines Computer mit Hilfe nicht-invasiver Gehirnsignale umgesetzt werden soll. Die Wissenschaftler weisen allerdings auch darauf hin, dass die Genauigkeit eines solchen Systems nicht der invasiver Systeme entsprechen wird. Basierend auf den neuen Forschungsergebnissen könnte es jedoch möglich sein einen Teil der Vorteile dieses direkten und natürlichen Ansatzes zur Prothesen- und Cursorkontrolle zu nutzen ohne den hohen Risiken einer Sensorenimplantation ausgesetzt zu sein.

Originalveröffentlichung:
Waldert, S., Preissl, H., Demandt, E., Braun, C., Birbaumer, N., Aertsen, A. & Mehring, C. (2008).
Hand movement direction decoded from MEG and EEG. J Neurosci. 28(4):1000-8.
doi:10.1523/JNEUROSCI.5171-07.2008
Kontakt:
Dr. Carsten Mehring
Institut für Biologie I &
Bernsteinzentrum für Computational Neuroscience
Albert-Ludwigs-Universität Freiburg
Hauptstr.1, 79104 Freiburg
Tel.: ++49-(0)761-2032543
E-mail: mehring@biologie.uni-freiburg.de
Stephan Waldert
Institut für Biologie I &
Bernsteinzentrum für Computational Neuroscience
Albert-Ludwigs-Universität Freiburg
Hauptstr.1, 79104 Freiburg
Tel.: ++49-(0)761-2032911
E-mail: waldert@bccn.uni-freiburg.de
Die Bernstein Zentren für Computational Neuroscience in Berlin, Freiburg, Göttingen und München werden vom Bundesministerium für Bildung und Forschung (BMBF) gefördert.

Katrin Weigmann | idw
Weitere Informationen:
http://www.bmi.uni-freiburg.de
http://www.bernstein-zentren.de
http://www.mp.uni-tuebingen.de

Weitere Berichte zu: BMI Prothese

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neue Therapieansätze bei RET-Fusion - Zwei neue Inhibitoren gegen Treibermutation
26.06.2017 | Uniklinik Köln

nachricht Bei Notfällen wie Herzinfarkt und Schlaganfall immer den Notruf 112 wählen: Jede Minute zählt!
22.06.2017 | Deutsche Herzstiftung e.V./Deutsche Stiftung für Herzforschung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie