Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Hoffnung bei Schlaganfall, MS und Alzheimer

17.03.2008
Charité-Forscher entschlüsseln Nervenzellenproduktion

Forscher der Charité haben jetzt entdeckt, warum sich im Gehirn nach Schädigungen, wie sie durch Schlaganfall, Multiple Sklerose und andere neurodegenerative Erkrankungen entstehen, keine neuen Nervenzellen bilden. Darüber berichten sie gemeinsam mit Kollegen vom Institut für Zell- und Neurobiologie der Charité und dem Institut für Rekonstruktive Neurobiologie in Bonn in der aktuellen Ausgabe von Nature Cell Biology.*

"In einem gesunden Gehirn werden bei einem Erwachsenen permanent neue Nervenzellen aus Stammzellen gebildet", erklären Prof. Frauke Zipp und Privatdozent Dr. Orhan Aktas, Wissenschaftliche Direktorin und Oberarzt der Cecilie-Vogt-Klinik für Neurologie im HKBB, Charité - Universitätsmedizin Berlin. "Nach einer Schädigung des Hirns jedoch produzieren die Stammzellen kaum mehr Nervenzellen, sondern stattdessen vermehrt so genannte Gliazellen."

Der Unterschied ist entscheidend: Neue Nervenzellen können den durch die Erkrankung entstandenen Hirnschaden reparieren. Gliazellen - auch Stützzellen genannt - die als Gerüst für Nervenzellen dienen, können das nicht. Anders als die Nervenzellen sind sie nicht in der Lage, Informationen zu verarbeiten. Die Folge: Es kommt zu Dauerschäden im Gehirn.

Bei vielen krankheitsbedingten Schädigungen des Hirns kommt es zu oxidativem Stress. Das heißt, es entstehen freie Radikale, die schädlich sind. Die Forscher haben diese Bedingungen künstlich hergestellt und beobachtet, dass dann die Aktivität eines Enzyms namens SIRT1 steigt. "Dieses Enzym kann man sich als eine Art Wegweiser vorstellen, der den Zellen vorgibt, in welche Richtung sie sich entwickeln sollen", sagt Dr. Aktas. Bei Schädigungsprozessen, die zu oxidativem Stress führen können, zeigt der Wegweiser in eine andere Richtung, und statt der hilfreichen Nervenzellen werden Gliazellen produziert.

In künftigen Projekten soll nun herausgefunden werden, wie sich die Zellproduktion steuern und die Erkenntnisse therapeutisch nutzen lassen. "Wir haben die Hoffnung, Menschen, die an Schädigungen im Gehirn leiden, wie sie bei Multipler Sklerose, Schlaganfall oder auch anderen traumatischen Hirnschädigungen auftauchen, irgendwann einmal besser helfen zu können", sagt Dr. Aktas. Bis dato sind die Möglichkeiten der Nervenzellenregeneration noch begrenzt. Die Entdeckung der Charité-Forscher könnte die vorhandenen Ansätze nun jedoch ein entscheidendes Stück weiterbringen.

* Prozorovski, Schulze-Topphoff, Glumm, Baumgart, Schröter, Ninnemann, Siegert, Bendix, Brüstle, Nitsch, Zipp and Aktas. Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol 2008 Mar 16; http://dx.doi.org/10.1038/ncb1700

Kontakt:
Prof. Frauke Zipp
Charité - Universitätsmedizin Berlin
Cecilie-Vogt-Klini für Neurologie
im HKBB
Tel.: 030 - 450 539 028
frauke.zipp@charite.de
Dr. Orhan Aktas
Charité - Universitätsmedizin Berlin
Cecilie-Vogt-Klinik für Neurologie
im HKBB
Tel.: 030 - 450 539 087
orhan.aktas@charite.de

Kerstin Endele | idw
Weitere Informationen:
http://dx.doi.org/10.1038/ncb1700
http://www.charite.de

Weitere Berichte zu: Gliazelle Nervenzelle Schlaganfall

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Verschwindende Äderchen: Diabetes schädigt kleine Blutgefäße am Herz und erhöht das Infarkt-Risiko
23.03.2017 | Technische Universität München

nachricht Ein Knebel für die Anstandsdame führt zu Chaos in Krebszellen
22.03.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen