Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Augentumore: Bestrahlung rettet Sehvermögen

17.12.2007
1000. Charité-Patientin am Hahn-Meitner-Institut behandelt

Augenärzte und Strahlentherapeuten der Charité - Universitätsmedizin Berlin haben jetzt die 1000ste Patientin am Teilchenbeschleuniger des Hahn-Meitner Instituts (HMI) behandelt. Der Beschleuniger liefert einen Protonenstrahl, der den Augentumor zerstört, das umliegende gesunde Gewebe aber schont.

"Im Unterschied zu einer konventionellen Strahlentherapie lässt sich die Wirkung der Protonen sehr genau auf den Tumor beschränken", erklärt Prof. Michael Foerster, Leiter der Klinik für Augenheilkunde am Charité Campus Benjamin Franklin. "So kann mit dem Verfahren in der Mehrzahl der Fälle die Sehkraft des erkrankten Auges gerettet werden." Die Kooperation zwischen der Charité und dem HMI besteht seit 1998. Seit Beginn dieses Jahres steht das Gerät, das ursprünglich für physikalische Experimente aufgebaut wurde, ausschließlich für die Charité zur Verfügung. Es ist bis heute die einzige derartige Behandlungsmöglichkeit in Deutschland.

In den ersten Jahren behandelten die Augenärzte der Charité nur die so genannten Aderhaut-Melanome mit dem Protonenstrahler. Dann entdeckten sie, dass die Therapie auch bei Gefäß- und Netzhauttumoren gut funktioniert. Auch deswegen stieg die Zahl der Patienten rasch an. Im Herbst 2004 kam der 500ste Patient. Jetzt hat sich die Zahl erneut verdoppelt. Dennoch ist die Therapie noch nicht ausreichend bekannt. Die Jubiläums-Patientin Birgit Petzold* aus dem sächsischen Oschatz erfuhr nur dank eigener Initiative, dass sich ihr erkranktes Auge auf diese Weise retten ließe. Nicht etwa ihr behandelnder Arzt hatte sie auf die Methode hingewiesen, sondern eine Bekannte stieß im Internet darauf.

Die Charité und das HMI haben das Verfahren kontinuierlich weiter verbessert. "Seit anderthalb Jahren ist ein neues Programm für die Therapieplanung im Einsatz", erläutert Dino Cordini, einer der zuständigen Medizin-Physiker. Mit einem solchen Programm bestimmen Physiker und Ärzte, welche Bereiche im Auge eines Patienten wie stark bestrahlt werden müssen. Das HMI entwickelte das Programm zusammen mit dem Deutschen Krebsforschungszentrum in Heidelberg. Damit kann man den Strahl viel genauer an Lage und Form des Tumors anpassen, so dass weniger gesundes Gewebe mitbestrahlt wird. "So nutzen wir die Eigenschaften der Protonen noch besser aus", betont Cordini. Die Augenklinik der Charité hat zudem das Operationsverfahren perfektioniert, mit dem große, im Protonenstrahler behandelte Tumoren anschließend entfernt werden. Auf diese Weise wird sichergestellt, dass die Abbauprodukte das Auge nicht schädigen.

Kontakt:
Kerstin Endele
Leiterin Geschäftsbereich Unternehmenskommunikation
Charité - Universitätsmedizin Berlin
Tel.: 030 - 450 570 401
kerstin.endele@charite.de
Dr. Ina Helms
Pressesprecherin
Hahn-Meitner-Institut Berlin
Tel.: 030 - 8062 2034
ina.helms@hmi.de

Kerstin Endele | idw
Weitere Informationen:
http://www.hmi.de/pr/aktuell/1000/bilder.html

Weitere Berichte zu: Augentumor Gewebe HMI Universitätsmedizin

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie