Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bahn brechende Experimente am lebenden Auge

16.04.2014

In einem menschlichen Auge gibt es rund 120 Millionen lichtempfindliche Sinneszellen. Forschern der Universität Bonn, der University of California und der University of Alabama ist es nun erstmals gelungen, bei lebenden Personen einzelne dieser Zellen gezielt zu stimulieren.

Die Bahn brechende Methode verspricht neue Antworten auf die Frage, wie das Auge Lichtreize zu Bildern verarbeitet. Außerdem erwarten sich die Wissenschaftler neue Erkenntnisse dazu, was bei Krankheiten mit den Lichtsinneszellen passiert. Auch die Wirkung von Medikamenten lässt sich möglicherweise direkt sichtbar machen. Die Arbeit erscheint im „Journal of Neuroscience“.


Weltpremiere: Forschern der Universität Bonn ist es zusammen mit US-Kollegen erstmals gelungen, gezielt einzelne Zapfen im Auge mit Laserlicht zu stimulieren und so ihre Funktion zu testen.

(c) Abbildung: Lawrence Sincich

Die Funktion einzelner Lichtsinneszellen ließ sich bislang nur an Gewebepräparaten studieren. Welcher Sinneseindruck im Menschen entsteht, wenn man ganz gezielt bestimmte Zellen stimuliert, lässt sich so jedoch nicht erforschen.

Das deutsch-amerikanische Forscherteam hat diese Frage nun erstmals beantwortet. Mit einer ausgeklügelten Apparatur konnten die Wissenschaftler bei vier Testpersonen einzelne Farbsinneszellen (so genannte Zapfen) im Auge stimulieren. Der Erfolg gilt als Bahn brechend, weil er einen völlig neuen Einblick in die Bildentstehung erlaubt: Die Sinneszellen in der Netzhaut sind durch Nervenzellen miteinander verschaltet.

Hier finden bereits grundlegende Schritte der Bildverarbeitung statt – die Netzhaut ist also streng genommen schon Teil des Gehirns. Mit der neuen Methode lässt sich untersuchen, auf welche Weise die Signale einzelner Zapfen miteinander verrechnet werden.

In der Studie nahmen die Probanden schon dann einen Lichtreiz wahr, wenn bei ihnen ein einzelner Zapfen mit Laserlicht stimuliert wurde. Das galt aber nur, wenn die Lichtintensität eine bestimmte Schwelle überschritt. Zudem sind die Zapfen keineswegs überall gleich empfindlich. An ihrem Rand (also dort, wo sie mit anderen Zapfen zusammenstoßen) nimmt ihre Sensitivität deutlich ab.

„Wir konnten zudem zeigen, dass die Wahrnehmungsschwelle am Rande des Sehfeldes erheblich höher liegt“, erklärt Erstautor Dr. Wolf Harmening von der Universitäts-Augenklinik Bonn und Leiter einer Emmy-Noether-Nachwuchsgruppe. „Das war auch zu erwarten. Man weiß, dass in der Netzhaut-Peripherie die Reize mehrerer Sinneszellen miteinander verrechnet werden, bevor sie weiter geleitet werden. Im Zentrum der Netzhaut ist das anders. Wir konnten diese Verschaltung nun erstmals auf der Ebene einzelner Zellen direkt untersuchen.“

Bessere Erforschung von Augenkrankheiten

Hohe Erwartungen weckt die neue Methode für die Erforschung von Augenkrankheiten. „Bislang konnten wir nur sehen, wie sich die Netzhaut auf Zellebene verändert – ob beispielsweise die Zahl der Zapfen abnimmt“, erklärt Dr. Harmening. „Nun können wir prüfen, ob die Funktion der Zellen bereits im Vorfeld beeinträchtigt ist.“ Auch die Wirkung von Medikamenten lässt sich so direkt sichtbar machen – etwa, ob diese den Funktionsverlust der Sehzellen aufhalten oder zumindest bremsen können. Bislang ist man für derart detaillierte Untersuchungen auf Präparate aus verstorbenen Patienten oder auf Tiermodelle angewiesen.

Hightech-Methoden aus der Astronomie

Einzelne Lichtsinneszellen zu stimulieren, ist alles andere als trivial. Einerseits sind unsere Augen nie wirklich ruhig, auch wenn wir einen Punkt fixieren. Die Sehzelle, die stimuliert werden soll, bewegt sich also ständig hin und her. Diese Bewegung – Wissenschaftler sprechen von Mikrosakkaden – lässt sich willentlich nicht unterbinden. Andererseits ist das Auge aus optischer Sicht keineswegs perfekt:

So ist die Linse nicht so geformt, dass sie ein absolut scharfes Bild erzeugen würde. Zudem wird das einfallende Licht wie durch ein Prisma in alle Regenbogenfarben aufgefächert und beim Weg durch den Augapfel weiter gestreut. Aus einem scharfen Punkt wird so auf der lichtempfindlichen Netzhaut ein verschmierter Fleck.

Mit Computerhilfe lässt sich für jede Testperson individuell bestimmen, wie der Laserstrahl zu fokussieren ist, damit er trotz dieser optischen Schwächen nicht verschmiert. Dabei kommt ein biegsamer Spiegel zum Einsatz – ähnlich wie bei Hightech-Teleskopen in der Astronomie. Ein weiteres Computerprogramm überwacht die Augenbewegung. Es schießt den Laserstrahl immer dann ab, wenn sich die gewünschte Zelle an der passenden Position befindet. „So stellen wir sicher, dass wir genau eine Zelle wiederholt stimulieren“, betont Dr. Harmening. „Nur so können wir sie individuell untersuchen.“

Publikation: Mapping the Perceptual Grain of the Human Retina; Wolf M. Harmening, William S. Tuten, Austin Roorda und Lawrence C. Sincich; The Journal of Neuroscience, DOI: 10.1523/JNEUROSCI.5191-13.2014

Kontakt:

Dr. Wolf Harmening
Universitäts-Augenklinik Bonn
Tel. 0228/287-15882
E-Mail: wolf.harmening@ukb.uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Aromatherapie bei COPD
12.05.2015 | Airnergy AG

nachricht Chronische Wunden können heilen
16.10.2017 | Universitätsklinik der Ruhr-Universität Bochum - Herz- und Diabeteszentrum NRW Bad Oeynhausen

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mikroben hinterlassen "Fingerabdrücke" auf Mars-Gestein

17.10.2017 | Biowissenschaften Chemie

Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen

17.10.2017 | Physik Astronomie

Kaiserschnitt-Risiko ist vererbbar

17.10.2017 | Biowissenschaften Chemie