Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bahn brechende Experimente am lebenden Auge

16.04.2014

In einem menschlichen Auge gibt es rund 120 Millionen lichtempfindliche Sinneszellen. Forschern der Universität Bonn, der University of California und der University of Alabama ist es nun erstmals gelungen, bei lebenden Personen einzelne dieser Zellen gezielt zu stimulieren.

Die Bahn brechende Methode verspricht neue Antworten auf die Frage, wie das Auge Lichtreize zu Bildern verarbeitet. Außerdem erwarten sich die Wissenschaftler neue Erkenntnisse dazu, was bei Krankheiten mit den Lichtsinneszellen passiert. Auch die Wirkung von Medikamenten lässt sich möglicherweise direkt sichtbar machen. Die Arbeit erscheint im „Journal of Neuroscience“.


Weltpremiere: Forschern der Universität Bonn ist es zusammen mit US-Kollegen erstmals gelungen, gezielt einzelne Zapfen im Auge mit Laserlicht zu stimulieren und so ihre Funktion zu testen.

(c) Abbildung: Lawrence Sincich

Die Funktion einzelner Lichtsinneszellen ließ sich bislang nur an Gewebepräparaten studieren. Welcher Sinneseindruck im Menschen entsteht, wenn man ganz gezielt bestimmte Zellen stimuliert, lässt sich so jedoch nicht erforschen.

Das deutsch-amerikanische Forscherteam hat diese Frage nun erstmals beantwortet. Mit einer ausgeklügelten Apparatur konnten die Wissenschaftler bei vier Testpersonen einzelne Farbsinneszellen (so genannte Zapfen) im Auge stimulieren. Der Erfolg gilt als Bahn brechend, weil er einen völlig neuen Einblick in die Bildentstehung erlaubt: Die Sinneszellen in der Netzhaut sind durch Nervenzellen miteinander verschaltet.

Hier finden bereits grundlegende Schritte der Bildverarbeitung statt – die Netzhaut ist also streng genommen schon Teil des Gehirns. Mit der neuen Methode lässt sich untersuchen, auf welche Weise die Signale einzelner Zapfen miteinander verrechnet werden.

In der Studie nahmen die Probanden schon dann einen Lichtreiz wahr, wenn bei ihnen ein einzelner Zapfen mit Laserlicht stimuliert wurde. Das galt aber nur, wenn die Lichtintensität eine bestimmte Schwelle überschritt. Zudem sind die Zapfen keineswegs überall gleich empfindlich. An ihrem Rand (also dort, wo sie mit anderen Zapfen zusammenstoßen) nimmt ihre Sensitivität deutlich ab.

„Wir konnten zudem zeigen, dass die Wahrnehmungsschwelle am Rande des Sehfeldes erheblich höher liegt“, erklärt Erstautor Dr. Wolf Harmening von der Universitäts-Augenklinik Bonn und Leiter einer Emmy-Noether-Nachwuchsgruppe. „Das war auch zu erwarten. Man weiß, dass in der Netzhaut-Peripherie die Reize mehrerer Sinneszellen miteinander verrechnet werden, bevor sie weiter geleitet werden. Im Zentrum der Netzhaut ist das anders. Wir konnten diese Verschaltung nun erstmals auf der Ebene einzelner Zellen direkt untersuchen.“

Bessere Erforschung von Augenkrankheiten

Hohe Erwartungen weckt die neue Methode für die Erforschung von Augenkrankheiten. „Bislang konnten wir nur sehen, wie sich die Netzhaut auf Zellebene verändert – ob beispielsweise die Zahl der Zapfen abnimmt“, erklärt Dr. Harmening. „Nun können wir prüfen, ob die Funktion der Zellen bereits im Vorfeld beeinträchtigt ist.“ Auch die Wirkung von Medikamenten lässt sich so direkt sichtbar machen – etwa, ob diese den Funktionsverlust der Sehzellen aufhalten oder zumindest bremsen können. Bislang ist man für derart detaillierte Untersuchungen auf Präparate aus verstorbenen Patienten oder auf Tiermodelle angewiesen.

Hightech-Methoden aus der Astronomie

Einzelne Lichtsinneszellen zu stimulieren, ist alles andere als trivial. Einerseits sind unsere Augen nie wirklich ruhig, auch wenn wir einen Punkt fixieren. Die Sehzelle, die stimuliert werden soll, bewegt sich also ständig hin und her. Diese Bewegung – Wissenschaftler sprechen von Mikrosakkaden – lässt sich willentlich nicht unterbinden. Andererseits ist das Auge aus optischer Sicht keineswegs perfekt:

So ist die Linse nicht so geformt, dass sie ein absolut scharfes Bild erzeugen würde. Zudem wird das einfallende Licht wie durch ein Prisma in alle Regenbogenfarben aufgefächert und beim Weg durch den Augapfel weiter gestreut. Aus einem scharfen Punkt wird so auf der lichtempfindlichen Netzhaut ein verschmierter Fleck.

Mit Computerhilfe lässt sich für jede Testperson individuell bestimmen, wie der Laserstrahl zu fokussieren ist, damit er trotz dieser optischen Schwächen nicht verschmiert. Dabei kommt ein biegsamer Spiegel zum Einsatz – ähnlich wie bei Hightech-Teleskopen in der Astronomie. Ein weiteres Computerprogramm überwacht die Augenbewegung. Es schießt den Laserstrahl immer dann ab, wenn sich die gewünschte Zelle an der passenden Position befindet. „So stellen wir sicher, dass wir genau eine Zelle wiederholt stimulieren“, betont Dr. Harmening. „Nur so können wir sie individuell untersuchen.“

Publikation: Mapping the Perceptual Grain of the Human Retina; Wolf M. Harmening, William S. Tuten, Austin Roorda und Lawrence C. Sincich; The Journal of Neuroscience, DOI: 10.1523/JNEUROSCI.5191-13.2014

Kontakt:

Dr. Wolf Harmening
Universitäts-Augenklinik Bonn
Tel. 0228/287-15882
E-Mail: wolf.harmening@ukb.uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz im Kampf gegen Prostatakrebs entdeckt
24.05.2018 | Universität Bern

nachricht Die neue Achillesferse von Blutkrebs
22.05.2018 | Ludwig Boltzmann Gesellschaft

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Was einen guten Katalysator ausmacht

24.05.2018 | Biowissenschaften Chemie

Superkondensatoren aus Holzbestandteilen

24.05.2018 | Biowissenschaften Chemie

Neue Schaltschrank-Plattform für die Energiewelt

24.05.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics