Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auslöser für Reparatur nach Rückenmarksverletzungen entdeckt

19.12.2014

Nach einer partiellen Rückenmarksverletzung kann der Körper seine grobmotorischen Fähigkeiten wiedererlangen. Dies ist nur möglich, indem sogenannte Muskelspindeln und assoziierte sensorische Kanäle aktiviert und dadurch neue Verschaltungen der Nervennetzwerke gefördert werden. Diesen Reparaturprozess hat die Forschungsgruppe von Prof. Silvia Arber am Biozentrum der Universität Basel und am Friedrich Miescher Institut for Biomedical Research nun aufgeklärt. Die Ergebnisse der Studie, die auch wegweisend für Therapien nach Rückenmarksverletzungen sein könnten, sind jetzt in dem Fachjournal «Cell» veröffentlicht.

Rückenmarksverletzungen führen zu grossen Einschränkungen der Bewegungsfähigkeit. Patienten mit partiellen Rückenmarksverletzungen können jedoch einen Teil ihrer grobmotorischen Fähigkeiten wiedererlangen. Man nimmt an, dass die unverletzten Teile des Rückenmarks dabei Nervenzellverbindungen knüpfen und neue Brücken bilden. Wie die Bildung solcher Umleitungen ausgelöst und gefördert werden, war bis anhin jedoch unklar.


Nervenfaserendigungen (orange) an einer Muskelspindel.

In Zusammenarbeit mit der Forschungsgruppe von Prof. Grégoire Courtine an der EPFL in Lausanne konnte das Team von Prof. Silvia Arber am Biozentrum der Universität Basel und am Friedrich Miescher Institut for Biomedical Research (FMI) im Mausmodell nun zeigen, warum sich nach partiellen Rückenmarksverletzungen gelähmte Gliedmassen wieder bewegen lassen: Im Muskel liegende Sensoren, die sogenannten Muskelspindeln, aktivieren durch ihre Impulse ans Rückenmark über sensorische Rückkoppelung die Reparatur des beschädigten Nervennetzwerks.

Die Muskelspindeln geben Startschuss zur Heilung

Durch Bewegung der Gliedmassen werden die sensorischen Nervenverbindungen vom Muskel zum Rückenmark stimuliert und so die Reparatur des motorischen Nervennetzwerks angeregt. Dadurch können grobmotorische Bewegungen wieder hergestellt werden. Ohne funktionsfähigen Muskelspindelkanal ist dies allerdings nicht möglich. «Die sensorischen Feedback-Loops der Muskelspindeln sind also ein wichtiger Schlüssel im Heilungsprozess», so Silvia Arber. Diese Impulse können auch nach einer Rückenmarksverletzung zurück ans zentrale Nervensystem geleitet werden – also auch dann, wenn der Informationsfluss vom Gehirn in Richtung Muskel nicht mehr funktioniert.
«Das bedeutet, dass ein wichtiger Auslöser für den Reparaturprozess die Informationen vom Muskel ans zentrale Nervensystem sind, also nicht nur Informationen, die das Gehirn top-down an die Muskeln sendet», sagt Erstautorin Aya Takeoka. Zudem konnten die Forscher zeigen, dass es nach einer Verletzung lediglich möglich ist, grobmotorische Bewegungsfähigkeiten spontan wieder herzustellen. Die Feinmotorik blieb dauerhaft verloren.

Therapien müssen an der Aktivierung der Muskelspindeln ansetzen

Die Aktivierung der Muskeln ist unerlässlich, um eine Reparatur des Nervennetzwerks nach einer Rückenmarkverletzung in Gang zu bringen. Ziel jeder Form der Bewegungstherapie sollte es demnach sein, die Muskeln möglichst umfangreich passiv zu trainieren. Denn je intensiver die Muskeln im natürlichen Bewegungsablauf eingesetzt werden, umso besser ist die Stimulierung der Muskelspindeln. Auf diesem Weg haben die Reparatur des Nervennetzwerkes und damit die Wiedergewinnung der grobmotorischen Bewegungsfähigkeit die grössten Erfolgsaussichten.

Infobox Muskelspindel
Muskelspindeln sind Sensoren in der Skelettmuskulatur des Körpers, die durch Dehnung und Kontraktion des Muskels passiv mitgedehnt oder verkürzt werden. Jede dieser tief in den Muskeln lokalisierten Muskelspindeln wird von sensorischen Nerven angesteuert. Die sensorischen Informationen dieser Nervenzellen gelangen direkt aus den Muskeln (zum Beispiel der Arme oder Beine) zurück ins Rückenmark. Diese übertragenen Impulse ermöglichen uns zum Beispiel, bei geschlossenen Augen zu spüren, in welcher Position sich Arme, Beine, Hände, Finger, kurz der gesamte Körper gerade befindet.

Originalbeitrag
Aya Takeoka, Isabel Vollenweider, Grégoire Courtine, and Silvia Arber
Muscle Spindle Feedback Directs Locomotor Recovery and Circuit Reorganization after Spinal Cord Injury
Cell (2014)

Weitere Auskünfte
• Prof. Dr. Silvia Arber, Universität Basel, Biozentrum, Tel. +41 61 267 20 57, E-Mail: silvia.arber@unibas.ch
• Heike Sacher, Universität Basel, Biozentrum, Kommunikation, Tel. +41 61 267 14 49, E-Mail: heike.sacher@unibas.ch

Heike Sacher | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Gefäßregeneration: Wie sich Wunden schließen
12.12.2017 | Medizinische Hochschule Hannover

nachricht Mit 3D-Zellkulturen gegen Krebsresistenzen
11.12.2017 | Universität Bern

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik