Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Am Gaspedal des Stoffwechsels

08.07.2014

Gesundheit und Wohlbefinden hängen entscheidend davon ab, dass der Haushalt der Schilddrüsenhormone nicht aus dem Gleichgewicht gerät.

Forschungsgruppen an den Universitäten Bayreuth und Bonn haben nun in Kooperation mit der Charité-Universitätsmedizin Berlin die Struktur und den Mechanismus eines wichtigen Enzyms entschlüsselt, mit dem die Körperzellen ihren Schilddrüsenhormonspiegel steuern. Die Ergebnisse werden online in der aktuellen Ausgabe des Wissenschaftsmagazins PNAS (Proceedings of the National Academy of Sciences of the United States of America) vorgestellt.


Das Enzym Dejodase (grün) und das Hormon Thyroxin (gelb) mit seinen vier Jod-Atomen (violett), wovon eines im Verlauf der Reaktion spezifisch entfernt wird.

(c) Grafik: Clemens Steegborn/Universität Bayreuth

Bei einer Schilddrüsen-Unterfunktion läuft der Stoffwechsel langsamer ab als normal, Betroffene fühlen sich schlapp. Bei Kindern kann dies auch zu geistiger Behinderung und Verzögerungen der körperlichen Entwicklung führen. Wird dagegen zu viel vom Schilddrüsenhormon Thyroxin produziert, kommt es zu Herzrasen, vermehrtem Schwitzen, Nervosität und Gewichtsverlust. „Bei Erwachsenen ist das Schilddrüsenhormon das Gaspedal des Stoffwechsels“, erklärt Prof. Dr. Ulrich Schweizer vom Institut für Biochemie und Molekularbiologie des Universitätsklinikums Bonn.

Wenn die Schilddrüse das Hormon Thyroxin produziert, braucht sie Jod. Thyroxin enthält vier Jod-Atome und wird deshalb auch T4 genannt. Es ist jedoch nicht das eigentlich aktive Hormon, sondern ein Vorläufer. „Die Zellen des Körpers haben die Möglichkeit, sich ihren Schilddrüsenhormonspiegel selbst maßzuschneidern“, erläutert Prof. Schweizer.

Dabei kommen spezielle Enzyme – so genannte Dejodasen – zum Einsatz. Indem sie aus dem Thyroxin ein bestimmtes Jod-Atom entfernen und dadurch T4 in T3 umwandeln, aktivieren sie das Hormon. Die gleichen Enzyme übernehmen aber auch eine deaktivierende Funktion, indem sie aus T3 oder T4 ein anderes Jodatom herausnehmen. Auf diese Weise können die Dejodasen den gesamten Stoffwechsel sowohl beschleunigen als auch „abbremsen“.

Erstmals entschlüsselt: Struktur und Mechanismus des Enzyms

„Seit mehr als 30 Jahren haben Biochemiker und Endokrinologen herauszufinden versucht, wie die Dejodasen genau arbeiten. Doch erst mit den strukturbiologischen Analysen, die wir hier in Bayreuth durchgeführt haben, ist ein wegweisender Durchbruch gelungen“, berichtet Prof. Dr. Clemens Steegborn, der an der Universität Bayreuth den Lehrstuhl für Biochemie leitet. Hier konnte die Struktur der Dejodase3 entschlüsselt werden. Gemeinsam mit Biochemikern des Universitätsklinikums Bonn und in Kooperation mit der Charité-Universitätsmedizin Berlin wurde dann aufbauend auf der Strukturinformation der Mechanismus des Enzyms aufgeklärt. Dabei stellte sich heraus, dass es Ähnlichkeiten zur Funktionsweise einer anderen Enzymfamilie gibt – nämlich der Peroxiredoxine, die schädliche Sauerstoffverbindungen abbauen helfen und an der Abwehr von oxidativem Stress beteiligt sind.

Dejodasen setzen zwar völlig andere Substanzen um, sind aber strukturell ähnlich zu Peroxiredoxinen und verwenden einen sehr ähnlichen Reaktionsmechanismus. Peroxiredoxine sind eine weit verbreitete und evolutionsbiologisch alte Enzymfamilie, aus der die Dejodasen offenbar hervorgegangen sind. Passend dazu haben die Forscher des Universitätsklinikums Bonn außerdem ein weiteres Rätsel gelöst: Sie haben gezeigt, dass Dejodasen durch kleine Redoxproteine wie Thioredoxin und Glutaredoxin wieder regeneriert werden.

Ansatzpunkte für neue Therapien

Die Erkenntnisse aus der Grundlagenforschung bergen auch Ansatzpunkte für neue Therapien. „Vor allem die Schilddrüsen-Überfunktion ist schwierig zu therapieren, wenn zum Beispiel Antikörper die Drüse zu exzessiver Hormonfreisetzung anregen“, sagt Prof. Schweizer. Hier könnten mit entsprechenden Wirkstoffen die aktivierenden Dejodasen gebremst werden. „Die Struktur und der Mechanismus der Dejodasen können jetzt genutzt werden, um viel gezielter passende Hemmstoffe für Therapien zu entwickeln“, ergänzt Prof. Steegborn.

Publikation: Ulrich Schweizer, Christine Schlicker, Doreen Braun, Josef Köhrle, and Clemens Steegborn: Crystal Structure of Mammalian Selenocysteine-Dependent Iodothyronine Deiodinase Suggests a Peroxiredoxin-like Catalytic Mechanism, PNAS, DOI: 10.1073/pnas.1323873111

Kontakt:

Prof. Dr. Ulrich Schweizer
Institut für Biochemie und Molekularbiologie
des Universitätsklinikums Bonn
Tel. +49 (0) 228 73 4444
E-Mail: uschweiz@uni-bonn.de

Prof. Dr. Clemens Steegborn
Lehrstuhl für Biochemie
Universität Bayreuth
Tel. +49 (0)921 55 7830
E-Mail: clemens.steegborn@uni-bayreuth.de

Johannes Seiler | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz im Kampf gegen Prostatakrebs entdeckt
24.05.2018 | Universität Bern

nachricht Die neue Achillesferse von Blutkrebs
22.05.2018 | Ludwig Boltzmann Gesellschaft

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics