Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

1,2 Millionen Dollar für Leukämie-Forschung bei Kindern

08.10.2008
Der Düsseldorfer Stammzellbiologe Prof. Dr. Markus Müschen (36) hält sich zur Zeit an der University of California at Los Angeles (UCLA) auf und forscht mit amerikanischen Kollegen gemeinsam über Leukämie bei Kindern. Das Kooperationsprojekt zwischen der Heinrich-Heine-Universität und der UCLA wird mit 1,2 Millionen Dollar gefördert.

In den letzten vier Jahrzehnten sind beachtliche Fortschritte in der Behandlung Akut Lymphoblastischer Leukämien (ALL) erzielt worden. ALL kommt besonders im Kindesalter vor und stellt die häufigste Krebserkrankung in dieser Altersgruppe. Während ein großer Teil der Patienten mit ALL inzwischen geheilt werden kann, kommt es oft zu einem Rückfall der Erkrankung, die dann schwieriger zu behandeln und häufiger therapieresistent ist.

Ursache für die hohe Rückfallquote bei ALL sind so genannte Leukämie-Stammzellen, die einerseits den Ursprung der Erkrankung bilden und andererseits extrem widerstandsfähig und hartnäckig gegenüber Chemotherapie sind.

Der Düsseldorfer Stammzellbiologe Prof. Dr. Markus Müschen ist mit seinem inzwischen zwölfköpfigen Forscherteam Ende 2006 vorübergehend an die University of Southern California in Los Angeles gewechselt, um dort Signalwege zu studieren, die Leukämie-Stammzellen so widerstandsfähig machen.

Das gemeinsame Projekt der Heinrich-Heine-Universität und der University of Southern California unter Leitung von Prof. Müschen wird nun mit insgesamt 1,2 Millionen Dollar (890.000 EUR) für die Dauer von drei Jahren gefördert. Drei Einzelprojekte mit Prof. Müschen als "Principal Investigator" wurden von der Leukemia and Lymphoma Society of America, dem California Institute of Regenerative Medicine (CIRM) und der V Foundation for Cancer Research zur Förderung ausgewählt.

Ziel der Untersuchungen von Prof. Müschen und seines Teams ist es, die einzigartige Fähigkeit der Leukämie-Stammzellen zu verstehen, ausgehend von einer einzigen Zelle den gesamten Tumor, bestehend aus etwa einer Milliarde Zellen, neu zu initiieren.

"Wie die Königin in einem Ameisenstaat, ist die Leukämie-Stammzelle die Zelle, von der die gesamte Population abhängt. Gelingt es, die Leukämie-Stammzelle gezielt anzugreifen, ist eine Neubildung der Leukämie und ein Rückfall der Erkrankung nahezu ausgeschlossen", hoffen Prof. Müschen und sein Düsseldorfer Forscherteam.

Neben der Erforschung der Signalwege, denen Leukämie-Stammzellen ihre ungewöhnlichen Fähigkeiten verdanken, geht es dem Düsseldorfer Forscherteam auch um die Entwicklung von Hemmstoffen, die die Stammzell-Signalwege blockieren.

Anfang 2009 plant Prof. Müschen mit seiner Gruppe an die Heinrich-Heine-Universität zurückzukehren, um von dort das Kooperationsprojekt mit der University of Southern California fortzusetzen. Die Förderentscheidung der Leukemia and Lymphoma Society of America, dem California Institute of Regenerative Medicine (CIRM) und der V Foundation for Cancer Research hat dafür den Grundstein gelegt.

Kontakt:
Prof. Dr. Markus Müschen
mmuschen@chla.usc.edu

Rolf Willhardt | idw
Weitere Informationen:
http://www.uni-duesseldorf.de/

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungsnachrichten

Good vibrations feel the force

23.02.2018 | Physik Astronomie

Empa zeigt «Tankstelle der Zukunft»

23.02.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics