Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zweidimensionale Nanostrukturen durch Selbstorganisation

02.08.2010
Einer internationalen Forschungsgruppe ist erstmals die Herstellung von Nanokristallen gelungen, die durch Selbstorganisation zu leitfähigen zweidimensionalen Nanostrukturen zusammenfinden.

Darüber berichten die beteiligten Wissenschaftler - unter ihnen Prof. Stephan Förster, Universität Bayreuth - in der jüngsten Ausgabe des Wissenschaftsmagazins "Science".

Nanokristalle sind winzige Teilchen, nicht mehr als 100 Nanometer groß. Wegen ihrer kristallinen Struktur und ihres besonderen Eigenschaftsprofils sind sie hochinteressant für die Entwicklung neuer Materialien und innovativer Technologien.

Bei der hierfür erforderlichen Grundlagenforschung hat eine internationale Forschungsgruppe unter Mitwirkung von Prof. Stephan Förster, der erst seit wenigen Monaten an der Universität Bayreuth tätig ist, wegweisende Ergebnisse erzielt. Erstmals ist die Herstellung von Nanokristallen gelungen, die sich durch Selbstorganisation so zusammenfügen, dass flächige kristalline Nanostrukturen mit hoher Leitfähigkeit entstehen. Über diese Prozesse und ihre Ursachen berichten die beteiligten Forscher in der Titelgeschichte der jüngsten Ausgabe des Wissenschaftsmagazins "Science".

Leitfähige Nanostrukturen erweitern Einsatzmöglichkeiten von Nanokristallen

Schon seit geraumer Zeit werden auf der Basis von Nanokristallen elektrische Bauelemente produziert. Aber diese Bauteile sind nur schlecht leitfähig, weil die Lücken zwischen den Nanopartikeln einen freien Fluss der Elektronen behindern. Zwar haben einige Forscher versucht, die Übergänge zwischen benachbarten Partikeln mit chemischen Methoden zu erleichtern, doch eine zufriedenstellende Leitfähigkeit wurde nicht erreicht. Hingegen ermöglichen flächige Nanostrukturen, die sich auf dem Weg der Selbstorganisation bilden, einen erheblich verbesserten Durchfluss der Elektronen. Aufgrund ihrer Leitfähigkeit bieten sich vielfältige Anwendungspotenziale, beispielsweise in flexiblen elektronischen Schaltungen, Solarzellen oder Photosensoren.

In der Forschung werden diese flächigen Nanostrukturen als "zweidimensional" klassifiziert. Denn ihre Länge und ihre Breite beträgt jeweils rund 1 Mikrometer (= 1 Tausendstel Millimeter) und ist damit um ein Vielfaches größer im Vergleich zu ihrer äußerst geringen Höhe von rund 2 Nanometern (= 2 Millionstel Millimetern). So besitzen sie unter dem Elektronenmikroskop ein nahezu quadratisches Aussehen.

Organische Moleküle rufen Nanokristalle zur Ordnung

Neben Prof. Stephan Förster, der von der Universität Hamburg nach Bayreuth gekommen ist, gehören auch Prof. Christian Klinke und Prof. Horst Weller (Universität Hamburg) sowie Dr. Beatriz H. Juarez (Forschungszentrum IMDEA Nanoscience in Madrid) zur internationalen Forschungsgruppe, die ihre Entdeckungen jetzt in „Science“ präsentiert. Die Nanokristalle, über die sie berichten, zeichnen sich durch eine relativ einfache Struktur aus. Es sind kleine Partikel von Bleisulfid, einer Verbindung aus Blei und Schwefel.

Was ist die Ursache dafür, dass diese Partikel so zusammenfinden, dass Flächenstrukturen statt regelloser Kristallhaufen entstehen? Die treibende Kraft geht bei diesem Prozess von organischen Molekülen aus. Diese Moleküle – es handelt sich um Ölsäure – befinden sich auf der Oberfläche der Nanokristalle. Hier üben sie auf deren innere Struktur eine stabilisierende Wirkung aus. Der Prozess der Selbstorganisation wird nun dadurch in Gang gesetzt, dass die organischen Moleküle beginnen, untereinander zu kristallisieren. Dadurch veranlassen sie die Nanokristalle, sich ihrerseits in eine kristalline, zusammenhängende Struktur zu fügen. Nicht in beliebigen Formen, sondern in wohlgeordneten Flächen lagern sich die Nanokristalle aneinander.

"Das technologische Potenzial dieser neuartigen Nanostrukturen zeigt, wie fließend der Übergang aus der Grundlagen- in die Anwendungsforschung geworden ist", erklärt Förster. "Unsere Entdeckung ermutigt uns, noch tiefer in die Mechanismen und Prozesse der Selbstorganisation von Materie einzudringen. Wir haben es offensichtlich mit einer zukunftsweisenden Forschungsrichtung zu tun, von der entscheidende Impulse für neue Technologien zu erwarten sind."

Von der Natur lernen: Zur Schlüsselfunktion der Kolloidforschung

Weltweit orientieren sich heute eine Vielzahl von Forschungsprojekten an der Leitfrage, wie sich Materie in der Natur selbst organisiert. Denn je besser derartige Prozesse verstanden werden, desto eher ist es möglich, bei der Entwicklung künstlicher Systeme von der Natur zu lernen. Komplexe makromolekulare Systeme mit maßgeschneiderten Eigenschaften und Funktionalitäten lassen sich dann, dem Vorbild der Natur folgend, kontrolliert herstellen. Im Mittelpunkt des Interesses stehen dabei die Kolloide. Dies sind winzige Partikel, die sich in einem anderen – festen, flüssigen oder gasförmigen – Medium fein verteilen. Die Kolloidforschung hat daher eine zentrale Bedeutung, wenn es darum geht, neue Einsichten in die Selbstorganisation von Materie und in den Aufbau komplexer Systeme zu gewinnen.

An der Universität Bayreuth bildet die Makromolekül- und Kolloidforschung bereits seit mehr als zwei Jahrzehnten einen Schwerpunkt in Forschung und Lehre. Dieses Profilfeld verstärkt Prof. Stephan Förster nun mit seinen speziellen Forschungskompetenzen. Dabei wird er an die jetzt in "Science" veröffentlichten Ergebnisse anknüpfen können. "Die Methoden der modernen Kolloidchemie versetzen uns in die Lage, große Mengen von nahezu identischen Nanokristallen unterschiedlichster Materialien herzustellen – und zwar so, dass wir deren optische, magnetische, elektrische oder photoelektrische Eigenschaften präzise einstellen können," erläutert Förster. "Für Forschungsvorhaben in diesen Bereichen bietet die Bayreuther Universität eine exzellente technische Infrastruktur. Was mich dabei besonders beeindruckt, ist die enge Zusammenarbeit von Chemikern, Physikern und Materialwissenschaftlern. Ich bin sicher, dass wir gemeinsam neue spannende Forschungsideen entwickeln werden."

Veröffentlichung:

Constanze Schliehe, Beatriz H. Juarez, Marie Pelletier, Sebastian Jander, Denis Greshniykh, Mona Nagel, Andreas Meyer, Stephan Förster, Andreas Kornowski, Christian Klinke, Horst Weller,
"Ultra-thin PbS sheets by two-dimensional oriented attachment"
in: Science (2010), Vol. 329. no. 5991, pp. 550 - 553
DOI-Bookmark: http://dx.doi.org/10.1126/science.1188035
Kontakt für weitere Informationen:
Prof. Dr. Stephan Förster
Lehrstuhl Physikalische Chemie I
Universität Bayreuth
D-95440 Bayreuth
Tel: +49 (0)921 / 55–2760
E-Mail (Sekr.): elisabeth.duengfelder@uni-bayreuth.de
Prof. Dr. Horst Weller, Prof. Dr. Christian Klinke
Institut für Physikalische Chemie
Universität Hamburg
Grindelallee 117
D-20146 Hamburg
Tel.: +49 (0)40 / 42838–3463, -8210
E-Mail: weller@chemie.uni-hamburg.de
klinke@chemie.uni-hamburg.de

Christian Wißler | idw
Weitere Informationen:
http://dx.doi.org/10.1126/science.1188035
http://www.uni-hamburg.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Metamaterial: Kettenhemd inspiriert Physiker
19.01.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise