Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zweidimensionale Nanostrukturen durch Selbstorganisation

02.08.2010
Einer internationalen Forschungsgruppe ist erstmals die Herstellung von Nanokristallen gelungen, die durch Selbstorganisation zu leitfähigen zweidimensionalen Nanostrukturen zusammenfinden.

Darüber berichten die beteiligten Wissenschaftler - unter ihnen Prof. Stephan Förster, Universität Bayreuth - in der jüngsten Ausgabe des Wissenschaftsmagazins "Science".

Nanokristalle sind winzige Teilchen, nicht mehr als 100 Nanometer groß. Wegen ihrer kristallinen Struktur und ihres besonderen Eigenschaftsprofils sind sie hochinteressant für die Entwicklung neuer Materialien und innovativer Technologien.

Bei der hierfür erforderlichen Grundlagenforschung hat eine internationale Forschungsgruppe unter Mitwirkung von Prof. Stephan Förster, der erst seit wenigen Monaten an der Universität Bayreuth tätig ist, wegweisende Ergebnisse erzielt. Erstmals ist die Herstellung von Nanokristallen gelungen, die sich durch Selbstorganisation so zusammenfügen, dass flächige kristalline Nanostrukturen mit hoher Leitfähigkeit entstehen. Über diese Prozesse und ihre Ursachen berichten die beteiligten Forscher in der Titelgeschichte der jüngsten Ausgabe des Wissenschaftsmagazins "Science".

Leitfähige Nanostrukturen erweitern Einsatzmöglichkeiten von Nanokristallen

Schon seit geraumer Zeit werden auf der Basis von Nanokristallen elektrische Bauelemente produziert. Aber diese Bauteile sind nur schlecht leitfähig, weil die Lücken zwischen den Nanopartikeln einen freien Fluss der Elektronen behindern. Zwar haben einige Forscher versucht, die Übergänge zwischen benachbarten Partikeln mit chemischen Methoden zu erleichtern, doch eine zufriedenstellende Leitfähigkeit wurde nicht erreicht. Hingegen ermöglichen flächige Nanostrukturen, die sich auf dem Weg der Selbstorganisation bilden, einen erheblich verbesserten Durchfluss der Elektronen. Aufgrund ihrer Leitfähigkeit bieten sich vielfältige Anwendungspotenziale, beispielsweise in flexiblen elektronischen Schaltungen, Solarzellen oder Photosensoren.

In der Forschung werden diese flächigen Nanostrukturen als "zweidimensional" klassifiziert. Denn ihre Länge und ihre Breite beträgt jeweils rund 1 Mikrometer (= 1 Tausendstel Millimeter) und ist damit um ein Vielfaches größer im Vergleich zu ihrer äußerst geringen Höhe von rund 2 Nanometern (= 2 Millionstel Millimetern). So besitzen sie unter dem Elektronenmikroskop ein nahezu quadratisches Aussehen.

Organische Moleküle rufen Nanokristalle zur Ordnung

Neben Prof. Stephan Förster, der von der Universität Hamburg nach Bayreuth gekommen ist, gehören auch Prof. Christian Klinke und Prof. Horst Weller (Universität Hamburg) sowie Dr. Beatriz H. Juarez (Forschungszentrum IMDEA Nanoscience in Madrid) zur internationalen Forschungsgruppe, die ihre Entdeckungen jetzt in „Science“ präsentiert. Die Nanokristalle, über die sie berichten, zeichnen sich durch eine relativ einfache Struktur aus. Es sind kleine Partikel von Bleisulfid, einer Verbindung aus Blei und Schwefel.

Was ist die Ursache dafür, dass diese Partikel so zusammenfinden, dass Flächenstrukturen statt regelloser Kristallhaufen entstehen? Die treibende Kraft geht bei diesem Prozess von organischen Molekülen aus. Diese Moleküle – es handelt sich um Ölsäure – befinden sich auf der Oberfläche der Nanokristalle. Hier üben sie auf deren innere Struktur eine stabilisierende Wirkung aus. Der Prozess der Selbstorganisation wird nun dadurch in Gang gesetzt, dass die organischen Moleküle beginnen, untereinander zu kristallisieren. Dadurch veranlassen sie die Nanokristalle, sich ihrerseits in eine kristalline, zusammenhängende Struktur zu fügen. Nicht in beliebigen Formen, sondern in wohlgeordneten Flächen lagern sich die Nanokristalle aneinander.

"Das technologische Potenzial dieser neuartigen Nanostrukturen zeigt, wie fließend der Übergang aus der Grundlagen- in die Anwendungsforschung geworden ist", erklärt Förster. "Unsere Entdeckung ermutigt uns, noch tiefer in die Mechanismen und Prozesse der Selbstorganisation von Materie einzudringen. Wir haben es offensichtlich mit einer zukunftsweisenden Forschungsrichtung zu tun, von der entscheidende Impulse für neue Technologien zu erwarten sind."

Von der Natur lernen: Zur Schlüsselfunktion der Kolloidforschung

Weltweit orientieren sich heute eine Vielzahl von Forschungsprojekten an der Leitfrage, wie sich Materie in der Natur selbst organisiert. Denn je besser derartige Prozesse verstanden werden, desto eher ist es möglich, bei der Entwicklung künstlicher Systeme von der Natur zu lernen. Komplexe makromolekulare Systeme mit maßgeschneiderten Eigenschaften und Funktionalitäten lassen sich dann, dem Vorbild der Natur folgend, kontrolliert herstellen. Im Mittelpunkt des Interesses stehen dabei die Kolloide. Dies sind winzige Partikel, die sich in einem anderen – festen, flüssigen oder gasförmigen – Medium fein verteilen. Die Kolloidforschung hat daher eine zentrale Bedeutung, wenn es darum geht, neue Einsichten in die Selbstorganisation von Materie und in den Aufbau komplexer Systeme zu gewinnen.

An der Universität Bayreuth bildet die Makromolekül- und Kolloidforschung bereits seit mehr als zwei Jahrzehnten einen Schwerpunkt in Forschung und Lehre. Dieses Profilfeld verstärkt Prof. Stephan Förster nun mit seinen speziellen Forschungskompetenzen. Dabei wird er an die jetzt in "Science" veröffentlichten Ergebnisse anknüpfen können. "Die Methoden der modernen Kolloidchemie versetzen uns in die Lage, große Mengen von nahezu identischen Nanokristallen unterschiedlichster Materialien herzustellen – und zwar so, dass wir deren optische, magnetische, elektrische oder photoelektrische Eigenschaften präzise einstellen können," erläutert Förster. "Für Forschungsvorhaben in diesen Bereichen bietet die Bayreuther Universität eine exzellente technische Infrastruktur. Was mich dabei besonders beeindruckt, ist die enge Zusammenarbeit von Chemikern, Physikern und Materialwissenschaftlern. Ich bin sicher, dass wir gemeinsam neue spannende Forschungsideen entwickeln werden."

Veröffentlichung:

Constanze Schliehe, Beatriz H. Juarez, Marie Pelletier, Sebastian Jander, Denis Greshniykh, Mona Nagel, Andreas Meyer, Stephan Förster, Andreas Kornowski, Christian Klinke, Horst Weller,
"Ultra-thin PbS sheets by two-dimensional oriented attachment"
in: Science (2010), Vol. 329. no. 5991, pp. 550 - 553
DOI-Bookmark: http://dx.doi.org/10.1126/science.1188035
Kontakt für weitere Informationen:
Prof. Dr. Stephan Förster
Lehrstuhl Physikalische Chemie I
Universität Bayreuth
D-95440 Bayreuth
Tel: +49 (0)921 / 55–2760
E-Mail (Sekr.): elisabeth.duengfelder@uni-bayreuth.de
Prof. Dr. Horst Weller, Prof. Dr. Christian Klinke
Institut für Physikalische Chemie
Universität Hamburg
Grindelallee 117
D-20146 Hamburg
Tel.: +49 (0)40 / 42838–3463, -8210
E-Mail: weller@chemie.uni-hamburg.de
klinke@chemie.uni-hamburg.de

Christian Wißler | idw
Weitere Informationen:
http://dx.doi.org/10.1126/science.1188035
http://www.uni-hamburg.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue Biotinte für den Druck gewebeähnlicher Strukturen
19.10.2017 | Forschungszentrum Jülich, Jülich Centre for Neutron Science

nachricht Was winzige Strukturen über Materialeigenschaften verraten
19.10.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Aufräumen? Nicht ohne Helfer

19.10.2017 | Biowissenschaften Chemie

Neue Biotinte für den Druck gewebeähnlicher Strukturen

19.10.2017 | Materialwissenschaften

Forscher studieren molekulare Konversion auf einer Zeitskala von wenigen Femtosekunden

19.10.2017 | Physik Astronomie