Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aus zwei mach eins: 3D-NanoChemiscope, ein einzigartiges Analysegerät für Oberflächen

23.08.2013
Das 3D-NanoChemiscope ist ein Wunderwerk modernster Analysetechnik.

Als Weiterentwicklung bekannter Mikroskopie- und Massenspektroskopietechniken bildet es die physikalischen und chemischen Materialoberflächen bis zur atomaren Stufe ab.


Das Resultat einer kombinierten, dreidimensionalen ToF-SIMS-/SFM-Oberflächenanalyse einer PCBM/CyI-Polymermischung, die in der Empa-Abteilung «Funktionspolymere» zur Herstellung organischer Solarzellen verwendet wird. Empa

Das weltweit einzigartige Instrument liefert nicht nur gestochen scharfe Bilder; es weiß auch, was es «sieht».

Was haben ein Pinguin und die Oberfläche einer Solarzelle miteinander zu tun? Nicht viel, gibt Empa-Physikerin Laetitia Bernard zu. Doch hätte sie schmunzeln müssen, als sich bei der Bearbeitung des Abbilds einer Polymermischung, die für die Herstellung von neuartigen organischen Solarzellen benötigt wird, an einer bestimmten Stelle immer deutlicher die Umrisse eines Pinguins herausschälten. Ein kleines Detail in der komplexen Welt der Hochleistungsmikroskopie.

Das an der Empa entwickelte 3D-NanoChemiscope bildet Proben nicht nur nanometergenau ab, sondern kann auch erstmalig präzis Aufschluss darüber geben, welche chemischen Elemente sich in einer Probe wo angeordnet haben. Simultan und dreidimensional lassen sich damit mechanische Eigenschaften wie Härte, Elastizität oder Reibungskoeffizient, aber auch die chemischen Eigenschaften von Oberflächenstrukturen bestimmen.

Im Falle des «Pinguin»-Bildes heisst das: das 3D-NanoChemiscope erfasst nicht nur die Umrisse des «Pinguins», sondern deckt auch auf, welche Polymere sich auf seinem «Schnabel», auf seinem «Auge» und «um ihn herum» angesiedelt haben. Mithilfe dieser Analyse können die SolarzellenforscherInnen effizient die Mechanismen ihrer Materialien kontrollieren und entsprechend Zusammensetzung oder Konzentration ihrer Polymermischung ändern. So lassen sich neue Strukturen und somit auch andere Eigenschaften für die Solarzelle herbeiführen.

Rasterkraftmikroskop und High-End-Massenspektrometer

Möglich macht diese Analyse das 3D-NanoChemiscope, das zwei bisherig unabhängige Techniken vereint. Das Rasterkraftmikroskop (SFM, von engl. «scanning force microscope») rastert mit einer ultrafeinen Nadel die Oberfläche ab, das High-End-Massenspektrometer (ToF-SIMS, von engl. «time-of-flight secondary ion mass spectrometry») ermittelt, aus welchen Stoffen sich die oberste monomolekulare Schicht der Festkörperoberfläche zusammensetzt, indem Ionenstrahlen das Material «beschiessen».

Wollte man bis anhin Oberflächen sowohl auf chemische als auch auf physikalische Eigenschaften untersuchen, so musste die Probe in zwei verschiedenen Geräte analysiert werden. Doch durch das Hin- und Hertragen vom einen zum anderen Gerät lief man immer Gefahr, die Probe zu verschmutzen oder zu oxidieren. Ausserdem war es praktisch unmöglich, die im SFM untersuchte Stelle exakt wiederzufinden. Was lag also näher, als die beiden Geräte zu «vereinen»? Damit stiessen die Physikerinnen und Maschinenentwickler bis anhin an ihre Grenzen. In einem vierjährigen, von der EU geförderten Projekt entwickelte Projektleiterin Laetitia Bernard mit Empa-ForscherInnen und Partnern aus Akademie und Industrie in akribischer Arbeit ein neues Gerät, in dem ein SFM und ein ToF-SIMS in einer Ultrahochvakuumkammer möglichst nah nebeneinander angeordnet sind.

Die MikroskopexpertInnen rüsteten das 3D-NanoChemiscope dazu mit einem neuartigen, eigens entwickelten Transportsystem aus, das die Probe auf einer Schiene mit einer Beschichtung aus diamantähnlichem Kohlenstoff (DLC) mittels Piezomotor sanft hin- und herschiebt. Der Probenhalter kann Bewegungen auf fünf Achsen ausführen, sodass sich die zu untersuchende Stelle aus den unterschiedlichsten Positionen analysieren lässt.

Nach seiner Fertigstellung steht der Prototyp – ein Ungetüm aus glänzendem Aluminium, 1 Meter lang, 70 Zentimeter breit und an die 1 Meter 70 hoch – nun beim Projektpartner ION-TOF GmbH im deutschen Münster im Einsatz und wird von Industriekunden und Forschungspartnern genutzt. Der Bau weiterer Geräte steht an, Kunden zeigen sich sehr interessiert und sind bereit, Beträge im siebenstelligen Frankenbereich dafür zu bezahlen.

Weitere Informationen:
http://www.empa.ch/bilder/2013-08-22-MM-3D-NanoChemiscope - Bilderdownload

Martina Peter | EMPA
Weitere Informationen:
http://www.empa.ch

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Quantenanomalien: Das Universum in einem Kristall
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Projekt »ADIR«: Laser bergen wertvolle Werkstoffe
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie