Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zukunftsweisendes Fraunhofer-Projekt: Effiziente Energiegewinnung, preiswert und CO2-frei

06.05.2011
Entwicklung hocheffizienter Elektroden für die großtechnische Erzeugung von Wasserstoff aus regenerativen Energien

Sowohl wirtschaftlich als auch klimapolitisch wird die Erzeugung von Wasserstoff über die Elektrolyse von Wasser als eine Schlüsseltechnologie für die Energieversorgung aus regenerativen Energiequellen bewertet.

In Demonstrationsprojekten wie dem Hybrid-Kraftwerk Uckermark oder an verschiedenen Wasserstofftankstellen wird bereits heute das enorme Potential der alkalischen Hochleistungselektrolyse von Wasser nachgewiesen.

Am Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung (IFAM) in Dresden wurde jetzt der Startschuss zu einem vom Bundeswirtschaftsministerium geförderten Entwicklungsprojekt gegeben, dessen Ziel die Weiterentwicklung herkömmlicher Elektrodenmaterialien hinsichtlich Effizienzsteigerung, Langzeitstabilität, Zuverlässigkeit und Materialkosten ist.

Das Forscherteam am Fraunhofer IFAM Dresden wird in den kommenden drei Jahren neuartige sogenannte rascherstarrte metallische Werkstoffe entwickeln, die sich als besonders effiziente und kostengünstige Elektrodenwerkstoffe erweisen. Die größten Vorteile liegen klar auf der Hand: zum Einen ist die Erzeugung von Wasserstoff über Elektrolyse CO2-frei. Zum Anderen werden möglichst preisgünstige und auch verfügbare Metalle wie beispielsweise Eisen und Cobalt genutzt, womit die entwickelten Elektrodenwerkstoffe wirtschaftlich konkurrenzfähig sind.

Hauptziel des Projektes ist es, das vorhandene Wissen aus den Laboren in die Praxis zu überführen und in großtechnischen Systemen zu testen. Um von Anfang an die Praxistauglichkeit der Entwicklungen sicherzustellen, wird ein Beraterkreis aus namhaften Experten der Industrie die Fraunhofer-Wissenschaftler unterstützen.

Mit dem Einsatz von rascherstarrten metallischen Elektrodenwerkstoffen in Großelektrolyseuren erwarten die Wissenschaftler eine deutliche Effizienz- und Leistungssteigerung. Damit werden die politischen Vorgaben zur nachhaltigen Wasserstoffproduktion aus regenerativen Energiequellen wesentlich erleichtert.

Des Weiteren wollen die Forscher des Fraunhofer IFAM Dresden mit ihren neuartigen Materialentwicklungen einen deutlichen Technologievorsprung des deutschen Elektrolyseuranlagenbaus im internationalen Markt sichern.

Cornelia Müller | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.ifam-dd.fraunhofer.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Metamaterial mit Dreheffekt
24.11.2017 | Karlsruher Institut für Technologie

nachricht CAU-Forschungsteam entwickelt neues Verbundmaterial aus Kohlenstoffnanoröhren
22.11.2017 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Metamaterial mit Dreheffekt

Mit 3D-Druckern für den Mikrobereich ist es Forschern des Karlsruher Instituts für Technologie (KIT) gelungen ein Metamaterial aus würfelförmigen Bausteinen zu schaffen, das auf Druckkräfte mit einer Rotation antwortet. Üblicherweise gelingt dies nur mit Hilfe einer Übersetzung wie zum Beispiel einer Kurbelwelle. Das ausgeklügelte Design aus Streben und Ringstrukturen, sowie die zu Grunde liegende Mathematik stellen die Wissenschaftler in der aktuellen Ausgabe der renommierten Fachzeitschrift Science vor.

„Übt man Kraft von oben auf einen Materialblock aus, dann deformiert sich dieser in unterschiedlicher Weise. Er kann sich ausbuchten, zusammenstauchen oder...

Im Focus: Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

Hochpräzise Messung des g-Faktors elf Mal genauer als bisher – Ergebnisse zeigen große Übereinstimmung zwischen Protonen und Antiprotonen

Das magnetische Moment eines einzelnen Protons ist unvorstellbar klein, aber es kann dennoch gemessen werden. Vor über zehn Jahren wurde für diese Messung der...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungen

Forschungsschwerpunkt „Smarte Systeme für Mensch und Maschine“ gegründet

24.11.2017 | Veranstaltungen

Schonender Hüftgelenkersatz bei jungen Patienten - Schlüssellochchirurgie und weniger Abrieb

24.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungsnachrichten

Maschinen über die eigene Handfläche steuern: Nachwuchspreis für Medieninformatik-Student

24.11.2017 | Förderungen Preise

Treibjagd in der Petrischale

24.11.2017 | Biowissenschaften Chemie