Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zielsichere Roboter im Mikromaßstab

30.09.2016

Dank einer halbseitigen Beschichtung mit Kohlenstoff lassen sich Mikroschwimmer durch Licht antreiben und steuern

Manche Bakterien zieht es zum Licht, andere in die Dunkelheit. Den einen ermöglicht dieses phototaktische Verhalten, die Sonnenenergie möglichst effizient für Ihren Stoffwechsel auszunutzen, die anderen schützen sich so vor zu hohen Lichtintensitäten.


Zur dunklen Seite: Halbseitig mit Kohlenstoff beschichtete Janusteilchen, benannt nach dem doppelgesichtigen römischen Gott, navigieren von selbst von einer Lichtquelle weg. Mit diesen Mikroschwimmern ermöglichen Stuttgarter Physiker fototaktisches Verhalten, welches von vielen Mikroorganismen bekannt ist, auch in synthetisch hergestellten Systemen.

© Celia Lozano (MPI für Intelligente Systeme/Universität Stuttgart)

Forscher um Clemens Bechinger vom Max-Planck-Institut für Intelligente Systeme und der Universität Stuttgart haben mit Kollegen von der Universität Düsseldorf nun einen verblüffend einfachen Weg gefunden, Mikroschwimmer zum Licht oder in die Dunkelheit zu dirigieren. Sie leisten damit auch einen Beitrag, damit winzige Roboter im menschlichen Körper künftig einmal gezielt Krankheitsherde behandeln können.

Ein Ziel anzusteuern, statt aufs Geratewohl in beliebiger Richtung zu schwimmen ist für viele Mikroorganismen lebenswichtig. „Die Evolution hat einen enormen Aufwand betrieben, um ihnen Orientierungsfähigkeit zu geben“, sagt Clemens Bechinger.

Auch Spermien sind dafür ein gutes Beispiel. Mit ihren Geißeln verfügen die schwimmenden Keimzellen über einen effizienten Antrieb. Ohne Orientierung hin zur Eizelle würde ihnen dieser aber wenig nützen. Ihre Chance, die Eizelle zu befruchten wäre sehr gering. Von der Eizelle abgegebene chemische Lockstoffe weisen ihnen den Weg. Sie folgen der zunehmenden Konzentration dieser Stoffe.

Bakterien werden auch von Geißeln angetrieben und haben sogar eine ganze Palette von Steuerungen entwickelt: Manche orientieren sich an der zu- oder abnehmenden Konzentration von Nährstoffen, andere an der Schwerkraft, am Erdmagnetfeld oder eben an Lichtquellen.
Das Team von Clemens Bechinger gibt synthetisch hergestellten Partikeln ebenfalls beides: einen Antrieb und ein Sensorium für die Richtung, zum Beispiel entlang eines Magnetfeldes oder zum Licht. So entstehen winzige Roboter, die sich in einer Flüssigkeit durch einfache äußere Signale lenken lassen.

Die schwarze Hälfte des Janusteilchens erwärmt sich stärker

Die Natur dabei direkt zu kopieren, verbietet sich allerdings. Denn die Wahrnehmungsapparate und auch die Antriebe, die Lebewesen benutzen, um sich in die bevorzugte Richtung zu bewegen, sind viel zu komplex. „Wir entwickeln dagegen, Mikroschwimmer, die mit minimalem Aufwand zur Phototaxis fähig sind“, erklärt Bechinger.

Dieses Ziel hat das Team um den Max-Planck-Fellow nun erreicht. Seine Mikroschwimmer sind verblüffend einfach aufgebaut. Es sind durchsichtige Glaskügelchen mit einigen Tausendstel Millimeter Durchmesser, deren Antrieb ihnen auch als Kompass dient. Mit beiden Funktionen statten die Forscher die Mikroschwimmer nämlich aus, indem sie deren eine Hälfte mit einer schwarzen Kohlenstoffschicht überziehen, sodass die Teilchen an Halbmonde erinnern.

In einer Mischung aus Wasser und einer löslichen organischen Substanz bewegt sich solch ein einfach aufgebautes Janusteilchen, wenn es gleichmäßig beleuchtet wird. Denn das Licht erwärmt die schwarz gefärbte Hälfte eines Janusteilchens stärker als die andere. Die Wärme entmischt das Wasser und die organische Substanz. So ergibt sich ein Unterschied in der Konzentration des gelösten Stoffes zwischen den beiden Seiten des Kügelchens. Das Konzentrationsgefälle wird ausgeglichen, indem Flüssigkeit entlang der Kugeloberfläche von der transparenten Hälfte zur schwarzen Seite strömt. Ähnlich wie ein Ruderboot, das sich entgegen der Ruderschläge bewegt, schwimmt das Teilchen daher mit der transparenten Seite voraus durch die Flüssigkeit.

Ein Hell-Dunkel-Übergang bewirkt eine gerichtete Bewegung

Allerdings bewegt sich der Mikroschwimmer in beliebiger Richtung, verfügt also über einen Antrieb, aber nicht über einen Orientierungssinn. Die Forscher beendeten die Ziellosigkeit des Janusteilchen jedoch, indem sie es entlang eines Lichtgradienten, also senkrecht zu einem allmählichen Hell-Dunkel-Übergang, schwimmen ließen. Das Mikroteilchen bewegte sich dann tatsächlich zielgerichtet zum schwächer beleuchteten Teil der Flüssigkeit.

Die Wissenschaftler haben diesem vergleichsweise einfachen System also die Fähigkeit zur Fototaxis verliehen. Dies erklären sie damit, dass sich die Seite des Kügelchens, die sich im heller beleuchteten Teil befindet stärker erwärmt als die Seite im dunkleren Teil. Daher ist der Flüssigkeitsstrom, der die Konzentrationsdifferenz zwischen den beiden Hälften des Janusteilchens ausgleicht, auf der Seite, die mehr Licht abbekommt, schneller aus als auf der Teilchenseite im dunkleren Teil des Hell-Dunkel-Übergangs. Diese Situation entspricht einem Ruderboot, bei dem sich die Ruder auf beiden Seiten nicht gleich schnell bewegen: es dreht sich.

Genau der gleiche Effekt lässt sich bei dem Janusteilchen beobachten. Es dreht sich solange, bis die schwarze Kappe in Richtung der größeren Helligkeit zeigt. Denn in dieser Position liegt die gesamte Grenzfläche zwischen Kappe und transparentem Teil in gleichmäßiger Helligkeit, sodass die Ausgleichsströmungen der Flüssigkeit überall gleich stark sind. Das Janusteilchen bewegt sich nun geradewegs zur dunkleren Seite hin. „Wir können durch einfache Modifikationen der Kugeloberfläche aber auch eine Bewegung zur helleren Seite hin erzeugen“, betont Celia Lozano, die als Postdoktorandin an Bechingers Institut arbeitet. Die Forscher haben somit ein denkbar einfaches Modell für die Fototaxis geschaffen.

Roboter als medizinische Patrouille werden greifbar

Fällt die Lichtintensität unter einen gewissen Wert ab, funktioniert der beschriebene Mechanismus allerdings nicht mehr. Bereits nach etwa einem Zehntel Millimeter weicht das Teilchen zunehmend von seinem Kurs ab. Um dieses Problem zu lösen, und die Mikroschwimmer auch über weitere Strecken zuverlässig zu navigieren, erzeugte Celia Lozano durch ein System aus einem Laser, Linsen und Spiegeln ein Lichtfeld mit einem Sägezahnprofil. Darin wechseln sich Bereiche mit abnehmender und zunehmender Helligkeit ab.

Die Passagen ansteigender und abfallender Helligkeit sind allerdings nicht gleich breit. In den vergleichsweise breiten Bereichen mit abfallender Lichtintensität steuern die Teilchenzielsicher zur dunkleren Region. In den Arealen mit ansteigender Intensität schwimmen sie dagegen vom Dunkeln ins Helle – sie behalten ihre ursprüngliche Richtung also bei. „Dies liegt daran, dass die Bereiche ansteigender Helligkeit so schmal sind, dass die Teilchen während ihres Durchlaufs keine Zeit haben, ihre Orientierung umzudrehen“, erklärt Borge ten Hagen, der diesen Effekt durch Computersimulationen bestätigen konnte. Insgesamt bewegen sich die Mikroschwimmer also kontinuierlich in eine Richtung.

Dass das System insgesamt sehr simpel ist, macht es interessant für Anwendungen. „Es lassen sich ohne großen Aufwand Millionen dieser Mikroschwimmer herstellen“, sagt Clemens Bechinger. Mit einer solchen Armada von zuverlässig steuerbaren Mikroteilchen lässt sich zum einen das Schwarmverhalten verschiedener Spezies modellhaft untersuchen. Zum anderen wird damit auch die Vision greifbarer, Robotern mit der Größe von Blutkörperchen zu erzeugen, die durch die Adern patrouillieren um Krankheitsherde wie etwa Tumore aufspüren und behandeln. Denn der von den Forschern entwickelte Orientierungsmechanismus funktioniert nicht nur in einem Hell-Dunkel-Übergang, sondern auch in einem chemischen Konzentrationsgefälle, welches üblicherweise in der Umgebung von Tumoren entsteht.

CJM

Kontakt:
Prof. Dr. Clemens Bechinger
Universität Stuttgart
Max-Planck-Institut für Intelligente Systeme, Stuttgart
Telefon:+49 711 6856-5218
E-Mail: c.bechinger@physik.uni-stuttgart.de

Originalpublikation:
Phototaxis of Synthetic Microswimmers in Optical Landscapes
Celia Lozano, Borge ten Hagen, Hartmut Löwen und Clemens Bechinger
Nature Communications, 30. September 2016; doi: 10.1038/NCOMMS12828

Weitere Informationen:
https://www.mpg.de/10757305/mikroschwimmer-fototaxis

Prof. Dr. Clemens Bechinger, Universität Stuttgart | Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen
27.06.2017 | Fraunhofer IFAM

nachricht Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter
23.06.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive