Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zaubertinte aus der Nanowelt

28.02.2017

Farben plasmonischer Drucke lassen sich durch eine chemische Reaktion verändern

Plasmonische Drucke sind um ein Vielfaches höher aufgelöst als herkömmlich gedruckte Bilder. Ihre Farben entstehen auf den Oberflächen winziger Metallpartikel, wenn dort Licht Elektronen zum Schwingen anregt.


Farbbeispiele

© MPI für Intelligente Systeme

Forscher des Stuttgarter Max-Planck-Instituts für Intelligente Systeme zeigen nun, wie sich die Farben solcher Metallpartikel mit Wasserstoff nachträglich variieren lassen. Die Technik könnte den Weg weisen, besonders hochaufgelöste Bilder zu animieren oder ausgesprochen scharfe Displays zu entwickeln. Sie bietet aber auch neue Ansätze für das Verschlüsseln von Informationen und für fälschungssichere Authentifizierungsmerkmalen.

Glaskünstler des Mittelalters nutzten den Effekt, lange bevor er überhaupt benannt war. Sie färbten die prächtigen Fenster gotischer Kathedralen unter anderem mit Nanopartikeln aus Gold, die im Licht rot leuchteten. Erst Mitte des 20. Jahrhunderts erhielt das zugrunde liegende physikalische Phänomen auch einen Namen: Plasmonen.

Solche kollektiven Schwingungen der freien Elektronen werden durch die Absorption einfallender elektromagnetischer Strahlung angeregt. Dabei gilt: Je kleiner die Metallteilchen, desto kürzer die Wellenlänge der absorbierten Strahlung. Irgendwann liegt diese Resonanzfrequenz, also das Absorptionsmaximum, im Bereich des sichtbaren Lichts.

Der nicht absorbierte Teil des Spektrums wird dann gestreut beziehungsweise reflektiert und sorgt für einen Farbeindruck. Dann nehmen Metallteilchen, die normalerweise silbrig, kupferfarben oder auch goldglänzend erscheinen, auch ganz andere Farben an.

Eine Auflösung von 100.000 Bildpunkten pro Zoll

Auf den Effekt setzten Forscher auch, um das plasmonische Drucken zu entwickeln. Dabei werden maßgeschneiderte quadratische Metallpartikel gezielt auf einem Untergrund angeordnet. Ihre Kantenlänge liegt im Bereich weniger 100 Nanometer (milliardstel Meter). Das ermöglicht eine Auflösung von 100.000 Bildpunkten pro Zoll (dots per inch: dpi) – ein Vielfaches dessen, was herkömmliche Drucker und auch Bildschirme leisten.

Bei Metallpartikeln von einigen 100 Nanometern liegt die Resonanzfrequenz der Plasmonen im Bereich des sichtbaren Lichts. Fällt weißes Licht auf solche Teilchen, erscheinen diese in einer bestimmten Farbe, zum Beispiel rot oder blau. Welche Farbe das Metall konkret annimmt, lässt sich dabei über die Größe der Partikel und auch über ihren Abstand zueinander festlegen. Diese Stellschrauben sind für das plasmonische Drucken daher so etwas wie die Farbpalette für die Malerei.

Der Trick mit der chemischen Reaktion

Auch die Forschungsgruppe „Intelligente Nanoplasmonik“ am Stuttgarter Max-Planck-Institut für Intelligente System nutzt diese Farbvariabilität. Derzeit arbeitet sie daran, plasmonische Drucke dynamisch zu gestalten. Nun stellt sie einen Ansatz vor, wie sich die Pixel auch nach dem Druck farblich beliebig verändern lassen, und zwar in definierter Weise.

„Der Trick besteht darin, dass wir Magnesium verwenden. Dieses können wir einer reversiblen chemischen Reaktion unterziehen, bei der der metallische Charakter verloren geht“, erklärt Laura Na Liu, die Leiterin der Stuttgarter Forschungsgruppe. „Magnesium kann bis zu 7,6 Gewichtsprozent Wasserstoff aufnehmen und reagiert dabei zu Magnesiumdihydrid, also MgH2“, so Liu weiter. Als Katalysator für diese Reaktion dient Palladium, mit dem die Forscher das Magnesium daher beschichten.

Beim kontinuierlichen Übergang von metallischem Magnesium in das nichtmetallische MgH2 ändert sich die Farbe der einzelnen Pixel zum Teil mehrfach. Die Farbwechsel und auch deren jeweilige Geschwindigkeit folgen dabei einem klaren Schema. Dieses wird sowohl von der Größe und dem Abstand der einzelnen Magnesiumteilchen als auch vom Wasserstoffangebot bestimmt.

Bei vollständiger Sättigung mit Wasserstoff verschwindet die Farbe sogar ganz, und die Pixel reflektieren das weiße Licht vollständig. Der Grund: Weil das Magnesium dann nicht mehr metallisch, sondern nur noch als MgH2 vorliegt, gibt es auch keine freien Metallelektronen mehr. Es können somit auch keine Schwingungen der Elektronen angeregt werden

Das Verschwinden der Göttin Minerva

Wie effektvoll sich ein solch dynamisches Farbverhalten einsetzen lässt, demonstrierten die Wissenschaftler am Beispiel eines plasmonischen Drucks der römischen Weisheitsgöttin Minerva, die auch das Logo der Max-Planck-Gesellschaft ziert. Die Forscher dimensionierten ihre Magnesium-Pixel so, dass die Haare zu Beginn rötlich erschienen, die Kopfbedeckung gelb mitsamt einem roten Federkamm und der Lorbeerkranz sowie die Gesichtsumrisse wiederum blau. Dann umspülten sie den Mikrodruck mit Wasserstoff. Ein Film zeigt im Zeitraffer, wie sich dabei die einzelnen Farben verändern. Aus Gelb wird Rot, aus Rot Blau und aus Blau Weiß. Nach einigen Minuten sind alle Farben verschwunden, und an Stelle der Minerva bleibt eine weiße Fläche zurück.

Die Wissenschaftler zeigten auch, dass dieser Prozess umkehrbar ist, indem sie den Wasserstofffluss durch einen Strom aus Sauerstoff ersetzten. Der Sauerstoff reagiert mit dem im Magnesiumhydrid gebundenen Wasserstoff zu Wasser, sodass die Magnesiumpartikel wieder metallisch werden. Daher durchlaufen alle Pixel die Farbwechsel nun in umgekehrter Abfolge, und am Ende erscheint Minerva wieder in den ursprünglichen Farben.

Auf ähnliche Weise ließen die Forscher das Mikroabbild eines berühmten Van-Gogh-Gemäldes erst verschwinden und dann wieder erscheinen. Ebenso gestalteten sie komplexe Animationen, die wie ein Feuerwerk wirken.

Das Prinzip einer neuen Verschlüsselungstechnik

Laura Na Liu kann sich vorstellen, dieses Prinzip auch in einer neuen Verschlüsselungstechnik anzuwenden. Um das zu demonstrieren, formte die Gruppe verschiedene Buchstaben aus Magnesiumpixeln. Die Zugabe von Wasserstoff sorgte dann dafür, dass einige Buchstaben mit der Zeit verschwanden – wie die Göttin Minerva. „Bei den übrigen hatten wir die Magnesiumpartikel zuvor mit einer hauchdünnen Oxidschicht überzogen“, erklärt Liu. Diese Schicht sei für den Wasserstoff undurchdringlich. Das unter dieser Oxidschicht liegende Magnesium bleibe also metallisch – und sichtbar. Denn die Schicht ist so dünn, dass das Licht sie durchdringen und im Magnesium die Plasmonen anregen kann.

Auf die Art könne man eine Botschaft kaschieren, indem man zum Beispiel echte und unsinnige Information miteinander mischt. Nur der richtige Empfänger sei in der Lage, die unsinnige verschwinden zu lassen und die eigentliche Nachricht herauszufiltern. Von dem Wort „Wiesbaden“ könnte also nach der Decodierung mit Wasserstoff lediglich ein „Wie n“ sichtbar bleiben. Um das Knacken einer solchen Verschlüsselung zu erschweren, arbeitet die Gruppe derzeit an einem Prozess, der für das Decodieren eine genau eingestellte Wasserstoffkonzentration erfordern würde.

Auch beim Kampf gegen Fälschungen lasse sich die Technik vielleicht eines Tages einsetzen, so Liu. „Man könnte zum Beispiel plasmonische Sicherheitsmerkmale auf Banknoten oder auch Medikamentenpackungen drucken, die später nur unter ganz konkreten, den Fälschern nicht bekannten Bedingungen überprüft oder ausgelesen werden können.“

Es muss nicht unbedingt Wasserstoff sein

Laura Na Liu weiß, dass der Einsatz von Wasserstoff manche Anwendungen erschwert und für Alltagseinsätze wie etwa mobile Displays unpraktisch wäre. „Wir sehen unsere Arbeiten eher als Startschuss für ein neues Prinzip, nämlich chemische Reaktionen für dynamische Drucke zu nutzen“, so die Stuttgarter Physikerin. Es sei gut denkbar, dass die Forschung schon bald andere chemische Reaktionen für die gewünschten Farbwechsel ersinnt als gerade den Phasenübergang zwischen Magnesium und Magnesiumdihydrid. Zum Beispiel Reaktionen, bei denen man nicht mehr gasförmige Reaktionspartner zuführen müsse.


Ansprechpartner

Dr. Laura Na Liu
Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart
Telefon: +49 711 689-1838
E-Mail: laura.liu@is.mpg.de

Originalpublikation
Xiaoyang Duan, Simon Kamin und Na Liu

Dynamic plasmonic colour display

Nature Communications; 24. Februar 2017; DOI: 10.1038/NCOMMS14606

Dr. Laura Na Liu | Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ein Wimpernschlag vom Isolator zum Metall
17.04.2018 | Forschungsverbund Berlin e.V.

nachricht Neues Material macht Kältemaschinen energieeffizienter
10.04.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Im Focus: Basler Forschern gelingt die Züchtung von Knorpel aus Stammzellen

Aus Stammzellen aus dem Knochenmark von Erwachsenen lassen sich stabile Gelenkknorpel herstellen. Diese Zellen können so gesteuert werden, dass sie molekulare Prozesse der embryonalen Entwicklung des Knorpelgewebes durchlaufen, wie Forschende des Departements Biomedizin von Universität und Universitätsspital Basel im Fachmagazin PNAS berichten.

Bestimmte mesenchymale Stamm-/Stromazellen aus dem Knochenmark von Erwachsenen gelten als äusserst viel versprechend für die Regeneration von Skelettgewebe....

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

Stralsunder IT-Sicherheitskonferenz im Mai zum 7. Mal an der Hochschule Stralsund

12.04.2018 | Veranstaltungen

Materialien erlebbar machen - MatX 2018 - Internationale Konferenz für Materialinnovationen

12.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Laser erzeugt Magnet – und radiert ihn wieder aus

18.04.2018 | Physik Astronomie

Neue Technik macht Mikro-3D-Drucker präziser

18.04.2018 | Physik Astronomie

Intelligente Bauteile für das Stromnetz der Zukunft

18.04.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics