Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Z-Ultra gebrauchsfertig: Neue Chromstähle für Hochtemperaturanwendungen

21.12.2016

Als wichtigster Industriewerkstoff ist Stahl mit mehr als 2500 Sorten hoch spezialisiert für unterschiedliche Anwendungen. Kleinste Änderungen der Zusammensetzung können das Materialgefüge auf atomarer Skala ändern und das Materialverhalten »im Großen« verbessern. Das Konsortium des EU- Projekts Z-Ultra unter Leitung des Fraunhofer-Instituts für Werkstoffmechanik IWM entwickelte neue 12%-Chrom-Stähle für Hochtemperaturanwendungen, die bis zu 30% fester als herkömmliche 9%-Chrom-Stähle sind und im Kraftwerk längere Zeit höhere Temperaturen und Drücke aushalten. Atomistische Simulationsmethoden unterstützten hierbei die Stahl-Entwickler dabei, die Legierungen zielgerichtet zu entwickeln.

Höhere Betriebstemperaturen in Gas- und Kohlekraftwerken bedeuten höhere Wirkungsgrade und damit weniger CO2-Ausstoß pro Kilowattstunde Strom. Der Temperaturerhöhung sind jedoch von Natur aus Grenzen gesetzt.


Im Projekt Z-Ultra wurde ein 12-Tonnen-Schmiedestück als Demonstrator hergestellt.

Saarstahl


Z-Phasenbildung: Einzelne Chrom-Atome (Cr) aus der Eisenmatrix (Fe) (li.) diffundieren in Metallnitridteilchen hinein, bilden flache Cluster (Mitte) und diese wachsen zu periodischen Schichten (re.).

Fraunhofer IWM

Die in Kraftwerken eingesetzten Werkstoffe, in der Regel Stähle, verlieren mit steigender Temperatur ihre Festigkeit und halten den in Turbinen und Rohrleitungen herrschenden Belastungen nicht mehr stand. Zudem nimmt die Korrosion mit steigender Temperatur deutlich zu. Generationen von Ingenieurinnen und Ingenieuren arbeiteten deshalb an der weiteren Verbesserung der Stähle, sodass mit den heutigen 9%-Chrom-Stählen Betriebstemperaturen von 615 °C möglich sind gegenüber maximal 300 °C vor 100 Jahren.

Mehr Chrom im Stahl hat Vor- und Nachteile

Um die Betriebstemperatur weiter zu steigern, ist ein höherer Chromgehalt im Stahl erforderlich. Das Element Chrom hat die angenehme Eigenschaft, eine schützende Chromoxidschicht auf der Stahloberfläche zu bilden und das umso wirkungsvoller, je höher der Chromgehalt ist. Der dadurch verbesserte Korrosionsschutz erlaubt nicht nur höhere Temperaturen, sondern auch den Einsatz biologischer Abfälle und anderer erneuerbarer Brennstoffe, deren Verbrennungsprodukte sehr aggressiv sein können.

»Nun gibt es aber leider einen Pferdefuß, der die Nutzung höherer Chromgehalte bisher verhindert hat: Die bemerkenswerte Festigkeit der derzeit besten warmfesten Stähle beruht nämlich auf fein verteilten Nitrid-Teilchen«, erklärt Prof. Dr. Hermann Riedel, Projektleiter am Fraunhofer IWM. Chromatome können bei den Betriebstemperaturen in diese Teilchen einwandern und sie damit in die sogenannte Z-Phase umwandeln. Auf Kosten der feinen Nitride entstehen dann grobe Z-Phasenteilchen, die für die Festigkeit nutzlos sind.

»In den derzeitigen 9%-Chromstählen dauert diese unerwünschte Umwandlung Jahrzehnte, während sie bei 12% Chromgehalt schon in einem Jahr zu einem nicht tolerierbaren Festigkeitsabfall führt«, so Riedel. Deshalb seien die 12%-Chromstähle bisher nicht in Kraftwerken einsetzbar, da diese ja für eine Lebensdauer von mehr als zehn Jahre ausgelegt werden.

Der Trick: Z-Phase als Stabilisator nutzen

»Wir haben uns im Projekt Z-Ultra das Ziel gesetzt, die grobkörnige, spröde Z-Phase in ihrem Wachstum so zu beeinflussen, dass sie nicht mehr schädlich ist, sondern den Stahl im Gegenteil stabiler macht«, erklärt Riedel. »Wir haben Legierungszusammensetzungen und Herstellungsverfahren gesucht und gefunden, welche die Z-Phase ganz fein im Stahl verteilt – das führt zu einer langfristig stabilen Teilchenstruktur«, so der Physiker. Die besten der sieben im Projekt neu entwickelten Legierungen sind rund 30 % fester als die herkömmlichen 9%-Chromstähle, haben eine 10 Mal höhere Lebensdauer unter gleichen Belastungsbedingungen und ihre Korrosionsfestigkeit ist erheblich besser.

Rohre aus den neuen Werkstoffen wurden unter Bedingungen getestet, die denen im Überhitzer eines Kraftwerks-Wärmetauschers nahe kommen: heißer Wasserdampf im Inneren und korrosive Verbrennungsgase und Aschepartikel an der Außenseite. Die Versuche zeigten, dass das Korrosionsverhalten der Werkstoffe bis 647 °C immer noch sehr gut war. Die schützenden Oxidschichten waren gleichmäßig gewachsen – auf der Außenseite dicker als auf der Innenseite. Einige Rohre wurden auch im echten Kraftwerksbetrieb getestet. Sie wurden inzwischen entnommen, untersucht und erneut für Langzeittests in ein Kohlekraftwerk eingesetzt.

»Um die Praxistauglichkeit zu zeigen, hat der beteiligte Stahlhersteller ein großes, zwölf Tonnen schweres Schmiedestück angefertigt, denn nicht allein die chemische Zusammensetzung des Stahls ist für die Werkstoffeigenschaften verantwortlich, sondern auch der Herstellungsprozess, insbesondere die Wärmebehandlung«, erläutert Riedel. Schließlich ist es wichtig, dass die herausragenden Materialeigenschaften beim Schweißen der Rohrleitungen und anderer Kraftwerksteile erhalten bleiben. Ein Schwerpunkt im Projekt war deshalb die Entwicklung von geeigneten Schweißverfahren, bis hin zu Ringen aus dem großen Schmiedeteil als Modell für geschweißte Turbinenrotoren.

Simulations-Tools für zielgerichtete Legierungsentwicklung

Bei der Entwicklung der genauen Zusammensetzung der neuen Stähle und den Parametern für den Schmiedeprozess ließen sich die Stahlentwickler kontinuierlich von atomistischen Simulationen leiten. Um die Materialentwicklung durch den Einsatz numerischer Simulationsmethoden zu beschleunigen, untersuchten die Wissenschaftlerinnen und Wissenschaftler am Fraunhofer IWM mit atomistischen und thermodynamischen Simulationen Fragen wie »Auf welche Weise bildet sich die Z-Phase?« oder »Was passiert während der Herstellung und später im Betrieb auf atomarer Skala?«

Sie untersuchten gezielt das Verhalten und den Einfluss der unterschiedlichen Legierungsbestandteile und optimierten die atomare Zusammensetzung der Legierung mit ihren Ergebnissen. So lässt sich zum Beispiel sagen, bei welchem Gehalt an Kohlenstoff, Stickstoff, Niob oder Tantal der Prozess der Z-Phasenumwandlung am schnellsten oder am langsamsten vonstattengeht. Atomistische Simulationen trugen so maßgeblich dazu bei, die einzelnen Schritte in diesem komplexen Umwandlungsprozess zu identifizieren und deren gegenseitige Abhängigkeiten und Beeinflussung zu verstehen.

An dem EU-geförderten Projekt Z-Ultra beteiligten sich unter der Leitung des Fraunhofer-Instituts für Werkstoffmechanik IWM sechs weitere Forschungsinstitute sowie je ein Stahlhersteller, ein Kraftwerksbetreiber und eine Ingenieur-Beratungsfirma aus der EU und aus den östlichen Partnerländern Ukraine, Georgien und Armenien.

Hintergrundbox:
Stahl ist der ideale Werkstoff für Bauteile in Hochtemperaturanwendungen bis zu 600 °C, wie sie in Kraftwerken oder in der chemischen Industrie auftreten können. In den 1980er Jahren brachte die Entwicklung der 9%-Chromstähle einen großen Fortschritt, mit denen die Anwendungstemperatur von 540 auf 615 °C gesteigert werden konnte. Bei diesen Temperaturen halten Bauteile aus 9%-Chromstahl etwa 20 bis 30 Jahre. Inzwischen wurden 12%-Chromstähle entwickelt, die zwar höhere Temperaturen aushalten, die jedoch bisher eine geringere Bauteillebensdauer aufweisen. Um diese neuen Stähle für Industrieanwendungen zu qualifizieren, wurde das EU-Projekt Z-Ultra gestartet.

Die 12%-Chromstähle sind interessant, da die thermische Stromerzeugung aus fossilen Brennstoffen voraussichtlich noch für viele Jahre ein wichtiger Teil der Stromerzeugung sein wird: Sie wird die Schwankungen in der Stromerzeugung der erneuerbaren Energien im Stromnetz ausgleichen. Für wirtschaftlich aufstrebende Länder innerhalb und außerhalb der EU ist zudem zu erwarten, dass die Anzahl von Kohle- und Gaskraftwerken ansteigen wird. Umso wichtiger ist es, deren Wirkungsgrad zu erhöhen, damit der Verbrauch der fossilen Brennstoffe sowie der CO2-Ausstoß möglichst gering bleiben.

Kontakt:
Prof. Dr. Hermann Riedel | Telefon +49 761 5142-103 | hermann.riedel@iwm.fraunhofer.de
Dr. Daniel Urban | Telefon +49 761 5142-378 | daniel.urban@iwm.fraunhofer.de

Weitere Informationen:

http://www.iwm.fraunhofer.de/presse-veranstaltungen-publikationen-preise/details... - PM mit druckfähigen Bildern

Katharina Hien | Fraunhofer-Institut für Werkstoffmechanik IWM

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik