Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wurzelbehandlung aus einem Guss

03.11.2009
Bei Wurzelbehandlungen muss der Zahnarzt zu verschiedenen Materialien greifen. Diese verbinden sich jedoch nicht immer optimal – teilweise sind teure Nachbehandlungen nötig. Eine neue Materialklasse erfüllt die unterschiedlichen Anforderungen.

Der Zahn pocht ohne Unterlass – der Gang zum Zahnarzt ist unumgänglich. Ist das Kauwerkzeug zu stark durch Karies geschädigt, hilft oft nur noch eine Wurzelbehandlung. Dabei entfernt der Zahnarzt zunächst den Nerv und schließt den entstehenden Hohlraum mit einem Füllmaterial.

Dieses muss so dicht sein, dass keine Bakterien durchkommen: Der Wurzelkanal könnte sich sonst erneut entzünden. Andererseits muss sich das Material gegebenenfalls wieder entfernen lassen. Ist die Zahnkrone stark zerstört, verankert der Zahnarzt mit einem Befestigungszement einen Wurzelstift in dem zuvor gefüllten Wurzelkanal. Dieser Stift dient als Verankerung für das Kompositmaterial, aus dem der fehlende Teil des Zahns – der Stumpf – wieder aufgebaut wird, und auf die der Zahnarzt wiederum die Krone setzt.

Bei der Wurzelbehandlung treffen also verschiedene Materialien aufeinander, die jeweils verschiedene Anforderungen erfüllen müssen. Das Problem dabei: Die Materialien sind nicht immer miteinander kompatibel oder verbinden sich nicht optimal mit der Zahnhartsubstanz. Das kann dazu führen, dass der Stift bricht, Stumpf und Krone nicht ausreichend am Stift haften und die teure Krone erneuert werden muss. Solche Fehler treten nicht selten auf: Die Rate liegt im einstelligen Prozentbereich.

Forscher des Fraunhofer-Instituts für Silicatforschung ISC in Würzburg haben mit ihren Kollegen der VOCO GmbH nun einen Werkstoff entwickelt, der sich für alle Komponenten einer Wurzelkanalbehandlung eignet. »Basis dieses Stoffs sind ORMOCERE®«, sagt Dr. Herbert Wolter, Gruppenleiter am ISC. »Diese ORMOCERE® haben wir mit verschiedenen Nano- und Mikropartikeln kombiniert, um die höchst unterschiedlichen Eigenschaften zu erreichen – Experten sprechen von Nanohybridmaterialien.« So sollten die Stoffe, mit denen der Wurzelkanal gefüllt wird, beim Aushärten möglichst nicht schrumpfen, mit der Zahnhartsubstanz dicht abschließen und im Röntgenbild sichtbar sein. Das Material, aus dem der Zahn wieder aufgebaut wird, sollte dagegen die gleichen Eigenschaften aufweisen wie der Zahn selbst.

»Hybridmaterialien eignen sich gut für diese Anforderungen. Ein Beispiel: Sie schrumpfen bei der Aushärtung nur um etwa 1,3 Prozent. Herkömmliche Stoffe schrumpfen meist um 2 bis 4 Prozent. Auch lassen sich die ORMOCERE so einstellen, dass sie gut an den unterschiedlichen Zahnbereichen haften«, sagt Wolter. Derzeit stellen die Mitarbeiter der VOCO GmbH aus den Materialien Dentalpräparate her – die Produktentwicklung ist also bereits in vollem Gange. In wenigen Jahren könnte die neue Entwicklung auf den Markt kommen.

Dr. Herbert Wolter | Fraunhofer Gesellschaft
Weitere Informationen:
http://www.fraunhofer.de/presse/presseinformationen/2009/11/wurzelbehandlung.jsp

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences