Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wundermaterial: Spinnenseide als Herzschlagmesser

12.09.2013
Neu entwickelter Verbundstoff ist enorm belastbar, flexibel und leitfähig

Forschern der Florida State University ist es erstmals gelungen, Spinnenseide und Kohlenstoffnanoröhrchen zu einem revolutionären neuen Werkstoff zu verbinden. Mithilfe einiger weniger relativ einfacher Produktionsschritte haben die Wissenschaftler eine Hybridversion beider Materialien produziert, die die besonderen Eigenschaften beider Stoffe kombiniert.


Spinne: Seide ist zäh und flexibel (Foto: flickr.com/ggallice)

Das Ergebnis ist ein Verbundmaterial, das nicht nur enorm belastbar, sondern gleichzeitig auch flexibel und elektrisch leitfähig ist. Dadurch kann die Spinnenseide-Kohlenstoffnanoröhrchen-Kombination etwa ideal in biegsamen medizinischen Geräten verbaut werden, wo sie sensibel genug ist, um sogar den Herzschlag eines Menschen zu erfassen.

"Diese Ergebnisse eröffnen vollkommen neue Möglichkeiten für die Konzipierung und Gestaltung von Sensoren und Messgeräten", zitiert der NewScientist die US-Bioingenieurin Kimberly Hamad-Schifferli vom Massachusetts Institute of Technology (MIT) http://www.mit.edu . Die Forschungsarbeit ihrer Kollegen aus Florida habe ungemeines Potenzial.

"Mit dieser Entwicklung sind alle möglichen verschiedenen geometrischen Formen denkbar", betont die Expertin. Es gebe zwar noch andere Methoden, um Kohlenstoffnanoröhrchen mit biologischen Materialien zu verbinden. "Im Vergleich zu diesem Ansatz benötigen sie aber teures Equipment und Chemikalien. Das Endprodukt ist auch nicht so gut formbar", so Hamad-Schifferli.

Einfache Herstellung
Um das neue "Wundermaterial" herstellen zu können, haben Eden Steven und sein Team an der Florida State University zunächst eine ganze Menge Spinnenseidebündel einer speziellen Gattung ("golden orb-weaver spider") gesammelt. Anschließend wurde ein Pulver aus Kohlenstoffnanoröhrchen derart elektrisch aufgeladen, dass es an der natürlich geladenen Seide haften blieb. Zu guter Letzt wurden beide Materialien mit einigen wenigen Tropfen Wasser vermengt und zwischen zwei Schichten von Teflon gepresst. Nachdem das Wasser wieder getrocknet war, wiesen die Seidenfäden eine hauchdünne Beschichtung mit Kohlenstoffnanoröhrchen auf.

Das Besondere an diesem Produkt: Der Verbundstoff ist dreimal so zäh wie Spinnenfäden in der Natur und besitzt eine sehr gute elektrische Leitfähigkeit. "Da sich die Spinnenfäden auf natürliche Art und Weise ausdehnen und zusammenziehen, wenn sie auf verschiedene Feuchtigkeitsniveaus treffen, kann auch der Hybridstoff leicht manipuliert werden, um gute elektronische Kontakte für eine Verkabelung herzustellen", erläutert Steven.

Vielseitige Anwendungen
Die Anwendungsmöglichkeiten des innovativen Werkstoffs sind vielseitig. Eines der interessantesten Einsatzgebiete könnte in medizinischen Messgeräten wie beispielsweise Pulsmessern liegen. Heute erhältliche Exemplare sind zumeist aus sehr festen und starren Materialien gefertigt, was ihren Nutzen in der Praxis deutlich einschränken kann. Mithilfe der Kombination aus Spinnenseide und Kohlenstoffnanoröhrchen können solche Produkte in Zukunft bald auch wesentlich flexibler gestaltet werden. So könnte ein Pulsmesser etwa einfach als biegsames Band um das Handgelenk oder sogar nur um einen Finger des Nutzers gelegt werden und würde immer noch ein akkurates Messergebnis liefern.

Markus Steiner | pressetext.redaktion
Weitere Informationen:
http://www.fsu.edu

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics