Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Wundermaterial für die Elektronik und die Energieumwandlung der Zukunft: Graphen

18.03.2013
Das Element Kohlenstoff zählt zu den fundamentalsten, vielseitigsten und bedeutendsten Bausteinen des Lebens. Es steht aber auch im Mittelpunkt der modernen Nanotechnologie und gilt als vielversprechender Baustein der Elektronikindustrie der Zukunft.

Denn allein durch eine unterschiedliche Anordnung der Kohlenstoffatome entstehen Materialien mit sehr unterschiedlichen Eigenschaften. Graphen ist eines dieser Materialien. Es besteht aus Kohlenstoffatomen, die in einer extrem dünnen hexagonalen Schicht angeordnet sind.

Seit der ersten Herstellung durch die beiden Nobelpreisträger Andre Geim und Konstantin Novoselov im Jahr 2004 hat Graphen Interesse ungeahnten Ausmaßes geweckt. Seine einzigartigen elektronischen Eigenschaften sind so faszinierend, dass für Graphen sogar prophezeit wird, es könne Silizium ablösen, auf dem die heutige Mikroelektronik basiert.

Um das enorme Potenzial dieses neuen Materials auszuschöpfen, hat die EU erst kürzlich beschlossen, im Rahmen der Europäischen Flaggschiff-Initiative, an der auch die TU Dresden an zwei Projekten beteiligt ist, die Forschung und Entwicklung im Rahmen des „Graphen-Flaggschiffs“ in den nächsten zehn Jahren mit einer Milliarde Euro zu fördern.

Zwei aktuell erschienene Publikationen der TU Dresden im renommierten Nature Magazin „Scientific Reports“ befassen sich mit dem erstaunlichen Potenzial, welches Graphen für zukünftige Anwendungen besitzt. Um es in der Massenfertigung anwenden zu können, müssen noch signifikante Hürden in der effizienten Herstellung von qualitativ hochwertigen Graphenstrukturen überwunden werden.
Wissenschaftler der TU Dresden, des Instituts für Festkörper und Werkstoffforschung Dresden (IFW) und der Universität Delft (Niederlande) zeigen in ihrem Artikel (http://dx.doi.org/10.1038/srep01115), wie sich amorpher Kohlenstoff, also ungeordnete Kohlenstoff-Atome, zu einem höchst geordneten hexagonalen Bienenwaben-Gitter reorganisieren und auf diese Weise reines, defektfreies Graphen bilden. „Es ist erstaunlich zu beobachten, wie sich ungeordnete Atome fast von selbst zu kristallinen Graphen-Schichten anordnen“, meint Dr. Mark H. Rümmeli von der TU Dresden. „Der von unserem Team entwickelte Prozess geht über das eigentliche Herstellungsverfahren sogar noch einen Schritt hinaus: Unerwünschte Defekte können vom Material selbst geheilt werden, was es höchst zuverlässig für verschiedenste Anwendungen in der modernen Elektronik macht“, setzt Rümmeli fort.

Der zweite Artikel (http://dx.doi.org/10.1038/srep01228) an dem ebenfalls Wissenschaftler der TU Dresden beteiligt sind, befasst sich mit den thermischen Eigenschaften von Graphen. Eine der Besonderheiten dieses Materials ist die höchste je beobachtete Wärmeleitfähigkeit – allerdings macht dies Graphen zu einem schlechten Kandidaten für Thermoelektrika, in denen Temperaturgradienten in elektrischen Strom umgewandelt werden und umgekehrt. Aber die Möglichkeit, Graphen-Streifen einfach und maßgeschneidert zu entwerfen, führt schließlich zu extrem effizienten Komponenten für thermoelektrische Anwendungen.
Die von den Wissenschaftlern vorgestellte Methode des sogenannten „Graphen-Tailorings“ basiert auf einem Bottom-up-Ansatz: Hierbei werden „Bausteinmoleküle“, bestehend aus unterschiedlichen Kohlenstoffisotopen, zu maßgeschneiderten Graphen-Streifen synthetisiert. In ihren Simulationen konnten die Wissenschaftler zeigen, dass die Wärmeleitfähigkeit um bis zu 98.8% reduziert werden kann, ohne die hervorragenden elektrischen Leitungseigenschaften zu beinträchtigen – eine Grundvoraussetzung für effiziente Thermoelektrika. Als Ergebnis konnten schließlich thermoelektrische Gütezahlen erreicht werden, die die Zielvorgaben für technische Anwendungen erfüllen.

„Kaum jemand hat erwartet, dass Graphen in einer solch einfachen Art und Weise synthetisiert und auch als solch effizienter thermoelektrischer Wandler eingesetzt werden kann. In beiden Veröffentlichungen haben wir neue Wege in der Graphen-Forschung aufgezeigt, die das Material einen Schritt weiter in Richtung Anwendung und Marktfähigkeit bringen“, sagt Prof. Gianaurelio Cuniberti, Inhaber der Professur für Materialwissenschaften und Nanotechnik an der TU Dresden, in dessen Arbeitsgruppe wesentliche Teile beider Projekte entstanden sind:
„Diese Arbeit wäre ohne die enge Zusammenarbeit von verschiedenen Institutionen hier in Dresden auf den Gebieten der Materialforschung, der Mikroskopie und der Modellierung nicht möglich gewesen. Dieser Synergie-Ansatz ist Kernpunkt des DRESDEN-concept und der Schlüssel für den Erfolg der Dresdner Wissenschaftslandschaft in der Exzellenzinitiative. Es steht außer Frage: Die Forschung in Dresden zeigt Wirkung und die Anerkennung der internationalen Gemeinschaft wächst stetig weiter.“

Informationen für Journalisten:

Prof. Dr. Gianaurelio Cuniberti | Dipl.-Phys. Florian Pump
Tel: 0351 463 31409
E-Mail: projects@nano.tu-dresden.de

Kim-Astrid Magister | Technische Universität Dresden
Weitere Informationen:
http://www.tu-dresden.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Studie InLight: Einblicke in chemische Prozesse mit Licht
22.11.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Eigenschaften von Magnetmaterialien gezielt ändern
16.11.2016 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie