Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Wundermaterial für die Elektronik und die Energieumwandlung der Zukunft: Graphen

18.03.2013
Das Element Kohlenstoff zählt zu den fundamentalsten, vielseitigsten und bedeutendsten Bausteinen des Lebens. Es steht aber auch im Mittelpunkt der modernen Nanotechnologie und gilt als vielversprechender Baustein der Elektronikindustrie der Zukunft.

Denn allein durch eine unterschiedliche Anordnung der Kohlenstoffatome entstehen Materialien mit sehr unterschiedlichen Eigenschaften. Graphen ist eines dieser Materialien. Es besteht aus Kohlenstoffatomen, die in einer extrem dünnen hexagonalen Schicht angeordnet sind.

Seit der ersten Herstellung durch die beiden Nobelpreisträger Andre Geim und Konstantin Novoselov im Jahr 2004 hat Graphen Interesse ungeahnten Ausmaßes geweckt. Seine einzigartigen elektronischen Eigenschaften sind so faszinierend, dass für Graphen sogar prophezeit wird, es könne Silizium ablösen, auf dem die heutige Mikroelektronik basiert.

Um das enorme Potenzial dieses neuen Materials auszuschöpfen, hat die EU erst kürzlich beschlossen, im Rahmen der Europäischen Flaggschiff-Initiative, an der auch die TU Dresden an zwei Projekten beteiligt ist, die Forschung und Entwicklung im Rahmen des „Graphen-Flaggschiffs“ in den nächsten zehn Jahren mit einer Milliarde Euro zu fördern.

Zwei aktuell erschienene Publikationen der TU Dresden im renommierten Nature Magazin „Scientific Reports“ befassen sich mit dem erstaunlichen Potenzial, welches Graphen für zukünftige Anwendungen besitzt. Um es in der Massenfertigung anwenden zu können, müssen noch signifikante Hürden in der effizienten Herstellung von qualitativ hochwertigen Graphenstrukturen überwunden werden.
Wissenschaftler der TU Dresden, des Instituts für Festkörper und Werkstoffforschung Dresden (IFW) und der Universität Delft (Niederlande) zeigen in ihrem Artikel (http://dx.doi.org/10.1038/srep01115), wie sich amorpher Kohlenstoff, also ungeordnete Kohlenstoff-Atome, zu einem höchst geordneten hexagonalen Bienenwaben-Gitter reorganisieren und auf diese Weise reines, defektfreies Graphen bilden. „Es ist erstaunlich zu beobachten, wie sich ungeordnete Atome fast von selbst zu kristallinen Graphen-Schichten anordnen“, meint Dr. Mark H. Rümmeli von der TU Dresden. „Der von unserem Team entwickelte Prozess geht über das eigentliche Herstellungsverfahren sogar noch einen Schritt hinaus: Unerwünschte Defekte können vom Material selbst geheilt werden, was es höchst zuverlässig für verschiedenste Anwendungen in der modernen Elektronik macht“, setzt Rümmeli fort.

Der zweite Artikel (http://dx.doi.org/10.1038/srep01228) an dem ebenfalls Wissenschaftler der TU Dresden beteiligt sind, befasst sich mit den thermischen Eigenschaften von Graphen. Eine der Besonderheiten dieses Materials ist die höchste je beobachtete Wärmeleitfähigkeit – allerdings macht dies Graphen zu einem schlechten Kandidaten für Thermoelektrika, in denen Temperaturgradienten in elektrischen Strom umgewandelt werden und umgekehrt. Aber die Möglichkeit, Graphen-Streifen einfach und maßgeschneidert zu entwerfen, führt schließlich zu extrem effizienten Komponenten für thermoelektrische Anwendungen.
Die von den Wissenschaftlern vorgestellte Methode des sogenannten „Graphen-Tailorings“ basiert auf einem Bottom-up-Ansatz: Hierbei werden „Bausteinmoleküle“, bestehend aus unterschiedlichen Kohlenstoffisotopen, zu maßgeschneiderten Graphen-Streifen synthetisiert. In ihren Simulationen konnten die Wissenschaftler zeigen, dass die Wärmeleitfähigkeit um bis zu 98.8% reduziert werden kann, ohne die hervorragenden elektrischen Leitungseigenschaften zu beinträchtigen – eine Grundvoraussetzung für effiziente Thermoelektrika. Als Ergebnis konnten schließlich thermoelektrische Gütezahlen erreicht werden, die die Zielvorgaben für technische Anwendungen erfüllen.

„Kaum jemand hat erwartet, dass Graphen in einer solch einfachen Art und Weise synthetisiert und auch als solch effizienter thermoelektrischer Wandler eingesetzt werden kann. In beiden Veröffentlichungen haben wir neue Wege in der Graphen-Forschung aufgezeigt, die das Material einen Schritt weiter in Richtung Anwendung und Marktfähigkeit bringen“, sagt Prof. Gianaurelio Cuniberti, Inhaber der Professur für Materialwissenschaften und Nanotechnik an der TU Dresden, in dessen Arbeitsgruppe wesentliche Teile beider Projekte entstanden sind:
„Diese Arbeit wäre ohne die enge Zusammenarbeit von verschiedenen Institutionen hier in Dresden auf den Gebieten der Materialforschung, der Mikroskopie und der Modellierung nicht möglich gewesen. Dieser Synergie-Ansatz ist Kernpunkt des DRESDEN-concept und der Schlüssel für den Erfolg der Dresdner Wissenschaftslandschaft in der Exzellenzinitiative. Es steht außer Frage: Die Forschung in Dresden zeigt Wirkung und die Anerkennung der internationalen Gemeinschaft wächst stetig weiter.“

Informationen für Journalisten:

Prof. Dr. Gianaurelio Cuniberti | Dipl.-Phys. Florian Pump
Tel: 0351 463 31409
E-Mail: projects@nano.tu-dresden.de

Kim-Astrid Magister | Technische Universität Dresden
Weitere Informationen:
http://www.tu-dresden.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise