Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftliche Impulse für die Reifenentwicklung

26.02.2013
Neues Transferprojekt von IPF Dresden, DIK Hannover und Continental bringt neueste Erkenntnisse der Grundlagenforschung in die Industrie

Autoreifen mit deutlich geringerem Verschleiß und Abrieb zu entwickeln, ist eine Herausforderung, für die jetzt in einem von der Deutschen Forschungsgemeinschaft geförderten Transferprojekt der Weg geebnet werden soll.


Durch Abrieb und Verschleiß geschädigter Reifen
Foto: Eric Lewis (veröffentlicht auf http://flickr.com/photo/49502985672@N01/31528636 unter Creative Commons Lizenz)

In dem über drei Jahre angelegten Projekt kooperieren das Leibniz-Institut für Polymerforschung Dresden e. V. (IPF) und das Deutsche Institut für Kautschuktechnologie e. V. (DIK) in Hannover mit dem größten deutschen Reifenproduzenten Continental Reifen Deutschland GmbH, um Erkenntnisse aus der Grundlagenforschung für neue Produktentwicklungen in der Reifenindustrie nutzbar zu machen.

IPF und DIK hatten gemeinsam mit vier weiteren Forschungseinrichtungen (Technische Universität Dresden, Technische Universität Chemnitz, Martin-Luther-Universität Halle-Wittenberg und Max-Planck-Institut für Polymerforschung Mainz) in der DFG-Forschergruppe "Bruchmechanik und Statistische Mechanik von verstärkten Elastomerblends" grundlegende Zusammenhänge zu Bruch- und Versagensmechanismen bei elastomeren Werkstoffen untersucht.

Wie ein Riss in einem Material entsteht, vor allem aber in welcher Weise und in welcher Geschwindigkeit er sich ausbreitet, bevor es schließlich zu einem größeren Schaden bzw. kompletten Materialversagen kommt, wird bei Gummi- und Elastomerwerkstoffen von zahlreichen Einflüssen bestimmt. Die Zusammenarbeit von sechs Partnern mit unterschiedlichen Expertisen erlaubte es, erstmals dem komplexen Geschehen im Detail auf die Spur zu kommen:

Einzelne Aspekte wurden mittels physikalischer Untersuchungen, numerischer Berechnungen und Modellierungen eingehend studiert, um schließlich das Gesamtphänomen als Geflecht wechselseitiger Abhängigkeiten zu verstehen. Es wurden Modelle und Prüfmethoden entwickelt und entsprechend kombiniert, die zuverlässige Aussagen zur Lebensdauer eines Bauteils und zu dessen Verhalten im Schädigungsfall ermöglichen.

Dies ist für Anwendungen wie Autoreifen von hohem Interesse – insbesondere im Hinblick auf Sicherheitsaspekte. Zudem bietet es die Grundlage für eine weitere Optimierung der Materialeigenschaften, vor allem in Bezug auf Abrieb und Verschleiß, wichtige Reifeneigenschaften, denen in den letzten Jahren seitens Forschung und Entwicklung allgemein deutlich weniger Beachtung geschenkt worden war als den seit November 2012 im EU-Reifenlabel auszuweisenden Kennwerten Rollwiderstand, Nasshaftung und externem Rollgeräusch. Eine Reduzierung von Abrieb und Verschleiß erhöht Lebensdauer und Betriebssicherheit von Reifen.

Im Rahmen des Transferprojektes werden Prüfmethoden und Modellierungsverfahren in die industrielle Praxis überführt und für deren Bedürfnisse weiterentwickelt. Continental erhält dadurch ein innovatives Konzept, das für Produktentwicklungen verwendet werden kann.

Kontakt:
Prof. Dr. Gert Heinrich
gheinrich@ipfdd.de
0351 4658-361

Kerstin Wustrack | idw
Weitere Informationen:
http://www.ipfdd.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics