Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Graphen und Porphyrine: Wissenschaftler verkuppeln zwei Stars der Chemie-Welt

21.09.2016

Graphen gilt unter Wissenschaftlern als Wundermaterial. Einem Forscherteam der Technischen Universität München (TUM) ist es nun gelungen, Graphen mit einer anderen chemisch bedeutsamen Gruppe, den Porphyrinen, zu verbinden. Porphyrine sind für ihre prägnanten funktionellen Eigenschaften bekannt, die beispielsweise bei der Photosynthese im Chlorophyll eine zentrale Rolle spielen. Die neuen Hybrid-Strukturen könnten in den Bereichen der molekularen Elektronik, Katalyse oder auch als Sensoren eingesetzt werden.

Kaum ein Material steht in der Forschung derzeit so im Mittelpunkt wie Graphen. Es ist flexibel, äußerst dünn und durchsichtig – dabei weist es eine extreme Zugfestigkeit auf und leitet elektrischen Strom. Ideale Voraussetzungen für viele Anwendungsbereiche.


Scheme that illustrates the metallation of fused 2H-P with Ag adatoms to form Ag-P and the reversible binding of a CO molecule to Ag-P.

Urheber Bild / Fotograf: Yuanqin He/TUM

Für die Gewinnung von Solarenergie oder den Einsatz als Gas-Sensor sind aber noch andere spezifische Eigenschaften nötig. Dafür können Moleküle, die diese Eigenschaften aufweisen, an die Kohlenstoff-Schicht "angehängt" werden.

In bisherigen Arbeiten hatten Wissenschaftler vor allem versucht, mit sogenannten nasschemischen Methoden die Moleküle auf die Oberfläche des Materials zu bringen. Auwärter und seine Kollegen wählten einen anderen Ansatz.

Im Ultrahochvakuum konnten sie kontrolliert Porphyrin-Moleküle an das Material binden. Dabei nutzen sie die katalytischen Eigenschaften einer Silberoberfläche, auf der die Graphenlage aufliegt. Durch Erhitzen verlieren die Porphyrin-Moleküle an ihren Rändern Wasserstoffatome und können so neue Bindungen mit den Graphenkanten eingehen.

Kontrollierte Reaktion

"Die Methode bietet ein sauberes und kontrolliertes Umfeld", erklärt Wilhelm Auwärter, Professor für Molekulare Nanowissenschaften an Grenzflächen. "Wir können genau sehen, wie die Moleküle binden und welche Arten von Bindungen entstehen." Dazu verwenden die Forscher modernste Rasterkraftmikroskopie, die es erlaubt die chemische Struktur einzelner Moleküle – deren atomares "Skelett" – direkt abzubilden.

Den Wissenschaftlern gelang es zum ersten Mal, funktionale Moleküle kovalent, also mit einer stabilen chemischen Bindung, an Graphenkanten anzubringen. "Es ist sinnvoll, nur die Kanten des Materials zu modifizieren, da so die positiven Eigenschaften des Graphens nicht zerstört werden", sagt Auwärter.

Spezifische Bindung von Gasmolekülen

Die Forscher wählten die Porphyrin-Moleküle wegen ihrer besonderen Eigenschaften. "Porphyrine sind beispielsweise verantwortlich für den Sauerstoff-Transport im Hämoglobin", erklärt Auwärter. Je nachdem, welche Metalle sich im Zentrum befinden, verändern die Moleküle ihre Eigenschaften und können unterschiedliche Aufgaben übernehmen, etwa die spezifische Bindung von Gasmolekülen wie Sauerstoff und Kohlendioxid.

Mithilfe der neuen Methode könnten in Zukunft auch andere Moleküle mit Graphen verknüpft werden. Außerdem wollen die Forscher die Reaktion noch besser kontrollieren und Moleküle an Kohlenstoff-Nanostrukturen wie Graphenbänder anhängen, um diese gezielt zu modifizieren. Diese Nanostrukturen haben eine zentrale Bedeutung für elektronische Anwendungen.

Das Projekt wurde gefördert durch den Europäischen Forschungsrat, die Deutschen Forschungsgemeinschaft, den Exzellenzcluster "Munich Centre for Advanced Photonics", das TUM Institute for Advanced Study und das siebte Forschungsrahmenprogramm der Europäischen Kommission.

Publikation: Yuanqin He, Manuela Garnica, Felix Bischoff, Jacob Ducke, Marie-Laure Bocquet, Matthias Batzill, Willi Auwärter & Johannes V. Barth: "Fusing tetrapyrroles to graphene edges by surface-assisted covalent coupling"; Nature Chemistry (2016); doi:10.1038/nchem.2600
Link: http://www.nature.com/nchem/journal/vaop/ncurrent/abs/nchem.2600.html

Bild zum Download: https://mediatum.ub.tum.de/1327242?show_id=1327241

Kontakt:
Prof. Dr. Wilhelm Auwärter
Technische Universität München
+49 89 289 12399
wau@tum.de

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter
23.06.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Materialwissenschaft: Widerstand wächst auch im Vakuum
22.06.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften