Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Winzige Strukturen mittels Femtosekundenlaser erzeugt

23.07.2013
Mittels Ultrakurzpulslaserbestrahlung ist es BAM-Wissenschaftlern gelungen, Strukturen auf der Oberfläche von Titan zu erzeugen, die winziger als 100 Nanometer (nm) sind.

Zum Vergleich: Ein Nanometer sind 10⁻⁹ Meter „Das ist ein Meilenstein für die Bearbeitung von Oberflächen, die im technischen und biomedizinischen Bereich Anwendung finden“, freut sich Jörg Krüger von der BAM Bundesanstalt für Materialforschung und -prüfung. Das Besondere daran: Der eingesetzte Laser selber erzeugt „nur“ Strahlung einer Wellenlänge von 790 nm.

„Wenn Sie normalerweise einen Strahl eines Lasers dieser Art fokussieren, tritt Beugung auf, die Ihnen nach den Gesetzen der klassischen Fernfeldoptik die erzielbare Auflösung etwa auf die Hälfte der Wellenlänge begrenzt“, erklärt sein Kollege Jörn Bonse.

Also wären eigentlich nur circa 400 nm möglich gewesen. Doch wie konnten die Wissenschaftler dann diese winzigen regelmäßigen Strukturen - wir sprechen immerhin von einer Größenordnung von einem Zehntel der Wellenlänge - gezielt auf einer Titanoberfläche erzeugen?

Ein Blick ins Elektronenmikroskop zeigt Riefen, die ein bisschen an die Wellenstruktur auf dem Meeresboden erinnern. Diese Riefen sind das Ergebnis eines Beschusses des Materials mit ultrakurzen Laserimpulsen. 50 Mal kurz hintereinander wird ein Impuls von nur 30 Femtosekunden Dauer auf das Material geschickt, berichten die Wissenschaftler im Fachblatt „Applied Physics A“*. Das muss man sich wie einen Stroboskopblitz in der Disco vorstellen, nur sehr sehr viel kürzer. Denn eine Femtosekunde ist eine extrem kurze Zeit. Eine Femtosekunde sind 10-15 Sekunden. 30 Femtosekunden, bezogen auf eine Sekunde, sind also genauso kurz wie 30 Sekunden im Verhältnis zu 32 Millionen Jahren.

Nach der Bestrahlung mit dem Femtosekundenlaser wird dann die Oberfläche inspiziert. Den BAM-Wissenschaftlern gelang es, zusammen mit Kollegen vom Max-Born-Institut für Nichlineare Optik und Kurzzeitspektroskopie (MBI) Berlin, die richtigen Parameter zu finden: Also wie viel Impulse brauche ich und wie viel Energie pro Fläche dürfen die einzelnen Impulse übertragen? „Diese Riefenstrukturen sehen wir nur ganz knapp oberhalb einer Schwelle, an der überhaupt eine Veränderung am Material erfolgt“, berichtet der Physiker Bonse. Wird die Energiedichte geringfügig erhöht, dann entstehen viel größere Riefen mit Perioden von einigen 100 nm. Doch die waren in diesem von der Deutschen Forschungsgemeinschaft (DFG) geförderten Projekt nicht erwünscht. Geforscht werden sollte nach Strukturen unterhalb der 100 nm-Grenze.

Die richtigen Parameter zu finden war nicht einfach, das Verfahren selber ist aber vergleichsweise unkompliziert und industriekonform. Man arbeitet unter Luft und muss nicht aufwendig ein Vakuum erzeugen, wie es notwendig wäre, wenn man Laser einsetzen würde, die eine Wellenlänge von deutlich unter 200 nm erzeugen. Und es ist ein Verfahren, das in einem Schritt durchgeführt werden kann. Die Probe wird eingespannt und mit dem Laser bestrahlt. Die Impulse generiert man in einem sogenannten Oszillator, verstärkt sie in einem Kristall und fokussiert sie dann mit einem Hohlspiegel. 

Woher die kleinen Strukturen kommen, darüber rätseln die Wissenschaftler noch. Es gibt verschiedene Ansätze, aber ganz verstanden ist der Prozess noch nicht. Das Projekt ist auch noch nicht beendet. In den kommenden zwei Jahren geht es darum, das Material Reibungsversuchen auszusetzen. Sind die Strukturen stabil? Erzeugen sie weniger Reibung? Mit welchen Ölen kann man sie kombinieren? Das sind nur einige Fragen, die noch geklärt werden müssen. Im biomedizinischen Bereich sehen die Wissenschaftler die Bearbeitung von Implantaten als einen Bereich der Anwendung. Durch diese winzigen Riefenstrukturen – so die Hoffnung der BAM-Wissenschaftler – könnte das bearbeitete Material besser vom Körper aufgenommen werden und Zellen es einfacher haben, sich auf der Oberfläche anzusiedeln. Bisher hat man sich bei den Versuchen auf Titan konzentriert. „Der Vorgang ist aber auf andere Materialien übertragbar“, sagt der Physiker Jörg Krüger.

*J. Bonse, S. Höhm, A. Rosenfeld, and J. Krüger
Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air; Applied Physics A 110 (2013) 547-551

http://link.springer.com/article/10.1007/s00339-012-7140-y

DFG-Projekt:
http://www.spp1327.de/
http://www.spp1327.de/pdf/Phase2/Webseite-SPP1327-2_Projekt12-Rosenfeld-Kr%C3%BCger-deutsch.pdf
Kontakt:
Dr. rer. nat. Jörn Bonse
Abteilung 6 Materialschutz und Oberflächentechnik
E-Mail: Joern.Bonse@bam.de
Dr. rer. nat. Jörg Krüger
Abteilung 6 Materialschutz und Oberflächentechnik
E-Mail: Joerg.Krueger@bam.de

Dr. Ulrike Rockland | idw
Weitere Informationen:
http://www.bam.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue Biotinte für den Druck gewebeähnlicher Strukturen
19.10.2017 | Forschungszentrum Jülich, Jülich Centre for Neutron Science

nachricht Was winzige Strukturen über Materialeigenschaften verraten
19.10.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise