Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Materialoberflächen Zellgemeinschaften steuern

08.07.2016

Von der Natur inspiriert: Materialwissenschaftler der Uni Jena nutzen strukturierte Oberflächen, um medizinische Implantate sicherer zu machen

ie Zahl der medizinischen Implantate wächst. Allein in Deutschland werden Jahr für Jahr fast eine viertel Million Hüftendoprothesen und zehntausende von Blutgefäßprothesen implantiert.


Jenaer Forschern ist es gelungen, Polymeroberflächen von künstlichen Blutgefäßen so zu verändern, dass sie die Anhaftung der Blutplättchen und damit die Blutgerinnung wesentlich reduzieren.

Was den Betroffenen auf der einen Seite ein Plus an Lebensqualität beschert, birgt auf der anderen Seite jedoch nach wie vor Risiken: „Heutige Implantatmaterialien, wie Polymere und Metalle, können unerwünschte Nebenwirkungen im menschlichen Organismus verursachen“, sagt Prof. Klaus D. Jandt von der Friedrich-Schiller-Universität Jena und nennt als Beispiele das Auftreten von Blutgerinnseln oder Infektionen.

Medizinische Implantate sicherer zu machen, ist ein Ziel des Materialwissenschaftlers Jandt und seines Teams, dem die Forscher nun mit zwei aktuellen Studien einen Schritt nähergekommen sind. Im Fachmagazin „Colloids and Surfaces B – Biointerfaces“ berichten die Jenaer Forscher, wie sie Polymeroberflächen so verändern können, dass diese die Anhaftung von Blutplättchen und damit die unerwünschte Blutgerinnung wesentlich reduzieren (doi:10.1016/j.colsurfb.2016.05.022).

Darüber hinaus zeigen sie, wie sich Oberflächen von Titanimplantaten modifizieren lassen, um das Riskio eines Bewuchses mit gefährlichen Krankheitserregern zu reduzieren (doi:10.1016/j.colsurfb.2016.05.049).

Blutgefäßprothesen bestehen heute vorwiegend aus Dacron, einem Polyester-Polymer oder Teflon. „Weil Blut dazu neigt, im Kontakt mit diesen Materialoberflächen zu gerinnen, besteht die Gefahr, dass sich die künstlichen Blutgefäße mit Blutgerinnseln verschließen, was lebensbedrohlich sein kann“, erläutert Prof. Jandt. Um die Anhaftung von Blutplättchen auf den künstlichen Oberflächen zu verringern, haben sich die Wissenschaftler von der Natur inspirieren lassen.

„In natürlichen Blutgefäßen wird die Blutgerinnung u. a. dadurch unterdrückt, dass die Zellen, mit denen die Gefäße ausgekleidet sind, eine typische dreidimensionale Form aufweisen und etwas aus der Gefäßoberfläche herausragen.“ Diese natürliche Form diente den Materialwissenschaftlern als Vorbild für die Oberfläche eines neuen künstlichen Blutgefäßes.

Wie sie in der nun vorgelegten Untersuchung zeigten, weist diese im Vergleich zu einer herkömmlichen unstrukturierten Polymeroberfläche eine um etwa 80 Prozent geringere Anhaftung von Blutplättchen auf. Mit Computersimulationen zeigten die Materialwissenschaftler weiter, dass die durch die Blutströmung verursachten Scherspannungen (d. h. Strömungskräfte) auf den bioinspirierten Oberflächen für diese reduzierte Anhaftung von Blutplättchen verantwortlich sind.

„Wir hoffen, damit eine wichtige Grundlage für neue Gefäßprothesen gelegt zu haben“, kommentiert Prof. Jandt diese Ergebnisse, die in Zusammenarbeit mit dem Universitätsklinikum Jena und dem Institut für Bioprozess- und Analysenmesstechnik e. V. in Heilbad Heiligenstadt entstanden.

Auch beim Verständnis von Infektionen an metallischen Titanimplantaten sind die Materialwissenschaftler der Uni Jena einem bioinspirierten Ansatz gefolgt. So schützt sich eine Reihe von Tieren gegen die Besiedelung durch Mikroorganismen, indem ihre Haut mikroskopisch kleine Strukturen aufweist, die die Anhaftung von Bakterien durch physikalische Kräfte verhindern. Solche Strukturen, wie sie etwa auf der Haut von Haien oder den Flügeln von Libellen vorkommen, haben die Forscher vereinfacht auf das Implantatmaterial Titan übertragen.

Wie sie gemeinsam mit Kollegen vom Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie e. V. (HKI) in ihrer nun veröffentlichten Arbeit belegen, lässt sich dadurch die Anhaftung von Mikroorganismen rein physikalisch um mehr als die Hälfte reduzieren.

Original-Publikationen:
Pham TT et al. Hemodynamic aspects of reduced platelet adhesion on bioinspired microstructured surfaces. Colloids and Surfaces B: Biointerfaces (2016) doi:10.1016/j.colsurfb.2016.05.022;
Lüdecke C et al. Nanorough titanium surfaces reduce adhesion of Escherichia coli and Staphylococcus aureus via nano adhesion points. Colloids and Surfaces B: Biointerfaces (2016) doi:10.1016/j.colsurfb.2016.05.049

Kontakt:
Prof. Dr. Klaus D. Jandt
Otto-Schott-Institut für Materialforschung der Friedrich-Schiller-Universität Jena
Löbdergraben 32, 07743 Jena
Tel.: 03641 / 947730,
E-Mail: K.Jandt[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Stephan Laudien | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue Beschichtung bei Industrieanlagen soll Emissionen senken
12.12.2017 | Technische Universität Kaiserslautern

nachricht Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften