Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Materialoberflächen Zellgemeinschaften steuern

08.07.2016

Von der Natur inspiriert: Materialwissenschaftler der Uni Jena nutzen strukturierte Oberflächen, um medizinische Implantate sicherer zu machen

ie Zahl der medizinischen Implantate wächst. Allein in Deutschland werden Jahr für Jahr fast eine viertel Million Hüftendoprothesen und zehntausende von Blutgefäßprothesen implantiert.


Jenaer Forschern ist es gelungen, Polymeroberflächen von künstlichen Blutgefäßen so zu verändern, dass sie die Anhaftung der Blutplättchen und damit die Blutgerinnung wesentlich reduzieren.

Was den Betroffenen auf der einen Seite ein Plus an Lebensqualität beschert, birgt auf der anderen Seite jedoch nach wie vor Risiken: „Heutige Implantatmaterialien, wie Polymere und Metalle, können unerwünschte Nebenwirkungen im menschlichen Organismus verursachen“, sagt Prof. Klaus D. Jandt von der Friedrich-Schiller-Universität Jena und nennt als Beispiele das Auftreten von Blutgerinnseln oder Infektionen.

Medizinische Implantate sicherer zu machen, ist ein Ziel des Materialwissenschaftlers Jandt und seines Teams, dem die Forscher nun mit zwei aktuellen Studien einen Schritt nähergekommen sind. Im Fachmagazin „Colloids and Surfaces B – Biointerfaces“ berichten die Jenaer Forscher, wie sie Polymeroberflächen so verändern können, dass diese die Anhaftung von Blutplättchen und damit die unerwünschte Blutgerinnung wesentlich reduzieren (doi:10.1016/j.colsurfb.2016.05.022).

Darüber hinaus zeigen sie, wie sich Oberflächen von Titanimplantaten modifizieren lassen, um das Riskio eines Bewuchses mit gefährlichen Krankheitserregern zu reduzieren (doi:10.1016/j.colsurfb.2016.05.049).

Blutgefäßprothesen bestehen heute vorwiegend aus Dacron, einem Polyester-Polymer oder Teflon. „Weil Blut dazu neigt, im Kontakt mit diesen Materialoberflächen zu gerinnen, besteht die Gefahr, dass sich die künstlichen Blutgefäße mit Blutgerinnseln verschließen, was lebensbedrohlich sein kann“, erläutert Prof. Jandt. Um die Anhaftung von Blutplättchen auf den künstlichen Oberflächen zu verringern, haben sich die Wissenschaftler von der Natur inspirieren lassen.

„In natürlichen Blutgefäßen wird die Blutgerinnung u. a. dadurch unterdrückt, dass die Zellen, mit denen die Gefäße ausgekleidet sind, eine typische dreidimensionale Form aufweisen und etwas aus der Gefäßoberfläche herausragen.“ Diese natürliche Form diente den Materialwissenschaftlern als Vorbild für die Oberfläche eines neuen künstlichen Blutgefäßes.

Wie sie in der nun vorgelegten Untersuchung zeigten, weist diese im Vergleich zu einer herkömmlichen unstrukturierten Polymeroberfläche eine um etwa 80 Prozent geringere Anhaftung von Blutplättchen auf. Mit Computersimulationen zeigten die Materialwissenschaftler weiter, dass die durch die Blutströmung verursachten Scherspannungen (d. h. Strömungskräfte) auf den bioinspirierten Oberflächen für diese reduzierte Anhaftung von Blutplättchen verantwortlich sind.

„Wir hoffen, damit eine wichtige Grundlage für neue Gefäßprothesen gelegt zu haben“, kommentiert Prof. Jandt diese Ergebnisse, die in Zusammenarbeit mit dem Universitätsklinikum Jena und dem Institut für Bioprozess- und Analysenmesstechnik e. V. in Heilbad Heiligenstadt entstanden.

Auch beim Verständnis von Infektionen an metallischen Titanimplantaten sind die Materialwissenschaftler der Uni Jena einem bioinspirierten Ansatz gefolgt. So schützt sich eine Reihe von Tieren gegen die Besiedelung durch Mikroorganismen, indem ihre Haut mikroskopisch kleine Strukturen aufweist, die die Anhaftung von Bakterien durch physikalische Kräfte verhindern. Solche Strukturen, wie sie etwa auf der Haut von Haien oder den Flügeln von Libellen vorkommen, haben die Forscher vereinfacht auf das Implantatmaterial Titan übertragen.

Wie sie gemeinsam mit Kollegen vom Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie e. V. (HKI) in ihrer nun veröffentlichten Arbeit belegen, lässt sich dadurch die Anhaftung von Mikroorganismen rein physikalisch um mehr als die Hälfte reduzieren.

Original-Publikationen:
Pham TT et al. Hemodynamic aspects of reduced platelet adhesion on bioinspired microstructured surfaces. Colloids and Surfaces B: Biointerfaces (2016) doi:10.1016/j.colsurfb.2016.05.022;
Lüdecke C et al. Nanorough titanium surfaces reduce adhesion of Escherichia coli and Staphylococcus aureus via nano adhesion points. Colloids and Surfaces B: Biointerfaces (2016) doi:10.1016/j.colsurfb.2016.05.049

Kontakt:
Prof. Dr. Klaus D. Jandt
Otto-Schott-Institut für Materialforschung der Friedrich-Schiller-Universität Jena
Löbdergraben 32, 07743 Jena
Tel.: 03641 / 947730,
E-Mail: K.Jandt[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Stephan Laudien | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Fraunhofer IFAM erweitert den Forschungsbereich »Beschichtungen für Bewuchs- und Korrosionsschutz«
11.01.2017 | Fraunhofer IFAM

nachricht Schrauben mit Köpfchen
10.01.2017 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau