Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Widerstandsfähig und leitend – Nano-Drähte aus Kohlenstoff

17.12.2014

Dünne Schichten aus Kohlenstoff sind für technische Anwendungen, etwa für die Mikromechanik oder -elektronik, äußerst interessant. Abhängig vom Bindungszustand der äußeren Elektronen herrscht entweder eine Graphit- oder eine Diamantähnlichkeit vor. Während das weiche Graphit leitfähig ist, handelt es sich bei der sehr widerstandsfähigen Diamantkonstellation um einen Isolator.

Gemeinsam mit Dresdner Partnern gelang es Forschern vom Helmholtz-Zentrum Dresden-Rossendorf (HZDR) erstmals, für Nano-Bauelemente aus Kohlenstoff den elektrischen Widerstand einfach und gezielt einzustellen. Dazu nutzten sie fein gebündelte Ionenstrahlen.


Elektronenmikroskopische Abbildung: Zwei sogenannte "Four Probe" Messstrukturen werden zur Bestimmung des Schichtwiderstandes des Kohlenstoffs eingesetzt.

HZDR

Nano-Materialien aus Kohlenstoff weisen einzigartige Eigenschaften auf, die sie für viele technologische Einsatzgebiete prädestinieren. Allerdings unterscheiden sich die mechanischen, optischen und elektrischen Eigenschaften dünner Kohlenstoff-Schichten je nach chemischer Bindung sehr stark. Liegt eine Diamantähnlichkeit vor, so hält das extrem stabile Material hohe Ströme, Spannungen und Temperaturen aus. Als Isolator war das Material bisher jedoch für viele Bereiche uninteressant. „Wir wollten herausfinden, ob wir in diamantähnliche Schichten mit einem besonders fein gebündelten Ionenstrahl leitfähige Strukturen eingravieren können“, formuliert der Physiker Dr. Peter Philipp die Leitfrage seiner Doktorarbeit am Dresdner Helmholtz-Zentrum.

Im Ionenstrahlzentrum des HZDR ist es möglich, Ionen in einem Strahl von nur rund zehn Nanometern zu bündeln – und das mit ganz unterschiedlichen Ionen-Sorten. „Mit diesem sehr schmalen Strahl haben wir in systematischen Untersuchungen besonders feine Strukturen wie beispielsweise Nano-Drähte erzeugt und untersucht, welchen Einfluss die Ionenbestrahlung einerseits und die Geometrie andererseits auf den spezifischen Widerstand und damit auf die Leitfähigkeit haben“, so Dr. Philipp. Unterstützt wurde er von Kollegen aus dem HZDR sowie dem Leibniz-Institut für Festkörper- und Werkstoffforschung (IFW) Dresden und dem Institut für Oberflächen- und Fertigungstechnik (IOF) der TU Dresden. So fanden die Wissenschaftler heraus, dass sich mit der Zeit der Ionenbehandlung der Widerstand über einen sehr weiten Bereich reproduzierbar einstellen lässt.

Heizung verstärkt Effekt

Treffen wenige Ionen auf die Kohlenstoffschicht, so wird lokal die Diamant- in die leitfähige Graphitkonstellation umgewandelt. Dabei spielen atomare Umordnungsprozesse eine wichtige Rolle. Heizt man die Probe während des Beschusses noch zusätzlich auf, so verstärkt dies den Effekt. Erstmalig konnten die Forscher zudem zeigen, dass schwere Ionen – zum Beispiel Gold oder Bismut – im Vergleich zu leichten Ionen – Silizium oder Germanium – eine um Größenordnungen höhere Leitfähigkeit bewirken. Das hat unter anderem mit dem enormen Energieeintrag der schwereren Ionen zu tun.

„Unsere Anlage für den fokussierten Ionenstrahl ist ein ideales Tool für die Forschung, denn damit können wir flexibel, präzise und schnell Nano-Strukturen erzeugen“, betont Dr. Philipp. „Ein großer Vorteil ist auch, dass wir ohne den Einsatz von Masken auskommen.“ Da man für viele Anwendungen leitfähige Nano-Drähte benötigt, haben die Dresdner Forscher diese nicht nur auf unterschiedlichen Substraten hergestellt, sondern auch kontaktiert. Hierfür erzeugten sie mit dem fein gebündelten Ionenstrahl zwei Nano-Drähte, die sie wie ein Kreuz übereinander legten (Van-der-Pauw-Struktur). Die Ergebnisse erschienen vor kurzem in der Fachzeitschrift Carbon.

Die Arbeiten wurden im gemeinsamen DFG-Projekt „Strukturbildende Prozesse in amorphen Kohlenstoffschichten“ von HZDR, Leibniz-Institut für Festkörper- und Werkstoffforschung (IFW) Dresden sowie Institut für Oberflächen- und Fertigungstechnik (IOF) der Technischen Universität Dresden durchgeführt.

Publikation: P. Philipp, L. Bischoff, U. Treske, B. Schmidt, J. Fiedler, R. Hübner, F. Klein, A. Koitsch, T. Mühl, „The origin of conductivity in ion-irradiated diamond-like carbon – Phase transformation and atomic ordering“, in: Carbon 80 (2014) 677-690, DOI: 10.1016/j.carbon.2014.09.012.

DOI-Link: http://www.sciencedirect.com/science/article/pii/S000862231400863X

Weitere Informationen:

Bitte beachten Sie, dass die Ansprechpartner während der Betriebsruhe zwischen 20.12.2014 und 04.01.2015 nicht erreichbar sind.

Dr. Lothar Bischoff
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel. +49 351 260 -2963 | E-Mail: l.bischoff@hzdr.de

Medienkontakt:
Christine Bohnet | Pressesprecherin
Tel. +49 351 260 2450 oder 0160 969 288 56 | E-Mail: c.bohnet@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf
Bautzner Landstr. 400 | 01328 Dresden | http://www.hzdr.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:

• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?

Zur Beantwortung dieser wissenschaftlichen Fragen werden Großgeräte mit teils einmaligen Experimentiermöglichkeiten eingesetzt, die auch externen Nutzern zur Verfügung stehen.
Das HZDR ist seit 2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Leipzig, Freiberg und Grenoble und beschäftigt rund 1.000 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Weitere Informationen:

https://www.hzdr.de/presse/nanodraehte

Dr. Christine Bohnet | Helmholtz-Zentrum Dresden-Rossendorf

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter
23.06.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Materialwissenschaft: Widerstand wächst auch im Vakuum
22.06.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften