Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Werkstoffwissenschaften: Metalle mit Diamanten

28.05.2009
Ein interfakultäres Forschungsteam untersucht an der TU Wien formstabile und wärmeleitende Werkstoffkombinationen für die Kernfusion.

MaterialwissenschafterInnen entwickeln Verbundwerkstoffe, die aus unterschiedlichen Materialien miteinander kombiniert sind, um neue, maßgeschneiderte Eigenschaftsprofile anbieten zu können.


v.l.n.r.: H.-P. Degischer, Michael Schöbel, Christoph Eisenmenger-Sittner, Christian Edtmaier, Siegfried Huemer, Helmut Böhm

ForscherInnen der Technischen Universität (TU) Wien haben vielversprechende Metallmatrix-Verbundwerkstoffe untersucht, die sehr gut Wärme leiten, mechanischen Belastungen bis 550 Grad standhalten können und sich bei erhöhter Temperatur nur wenig ausdehnen.

Eine mögliche Anwendung dieser Werkstoffkombinationen ist im derzeit in Bau befindlichen Kernfusionsreaktor ITER in Cadarache, in Frankreich, wo man sie zur Kühlung der ersten Wand des Versuchsreaktors einsetzen will. Auch bei der Leistungselektronik für Motoren und Computer spielt verbesserte Wärmeabfuhr eine immer größere Rolle. Gelingt es nicht die überschüssige Wärme abzuleiten, kann die Leistung der Rechner nicht mehr gesteigert werden. Als Kühlmaterialien können die Matrix-Verbundwerkstoffe nicht zuletzt auch in Raketentriebwerken zum Einsatz kommen.

Vier TU-Institute arbeiten an den Werkstoffkombinationen im Rahmen eines EU-Projekts des 6. Rahmenprogrammes mit dem Titel EXTREMAT, welcher für "New Materials for Extreme Environ-ments" steht. "Wir haben einige Metallmatrix-Verbundwerkstoffe und deren Verbindung untersucht, die aussichtsreich für die Anwendung in Kühlkörpern für Kernfusionsreaktoren, in Raketentriebwerken oder in der Leistungselektronik sind. Die Charakterisierung dieser heterogenen Materialien fällt in unseren Kompetenzbereich", so Professor H.Peter Degischer, Leiter des Instituts für Werkstoffwissenschaft und Werkstofftechnologie der TU Wien. Kupfer und Silber weisen eine gute Wärmeleitfähigkeit auf, sind aber wegen des relativ hohen Ausdehnungskoeffizienten nicht ausreichend formstabil bei Temperaturänderungen. Außerdem sinkt ihre Festigkeit dramatisch mit erhöhter Temperatur.

"Ab 300 Grad verformt sich Kupfer wie Butter." Die Verstärkung mit Siliziumkarbid- oder Wolframfasern mit etwa 0,1 Millimeter oder Kohlenstofffasern mit weniger als 1/100 Millimeter Durchmesser erhöht die Festigkeit und die Formstabilität ohne die Leitfähigkeit zu vermindern. Eine Kombination aus Silber mit circa 0,1 Millimeter großen Diamantteilchen, die durch zarte Siliziumbrücken verbunden sind, erachtet Degischer für die Leistungselektronik als am aussichtsreichsten. Mittels Simulationsrechnungen wurden sowohl die inneren Spannungen als auch die Wärmeleitfähigkeit in Abhängigkeit von der inneren Architektur der Verbundwerkstoffe vorhergesagt.

Das Metallwerk Plansee könnte für diese neuen Werkstoffe eine industrielle Produktion aufbauen. "Bei unseren Untersuchungen am Synchrotron, einer besonders brillanten Röntgenquelle in Grenoble, zeigte sich, wie sich die dreidimensional verschränkten Komponenten der Verbundwerkstoffe beim wiederholten Aufheizen und Abkühlen unterschiedlich verformen. Darüber hinaus konnte man auch feststellen ab wann in mikro-tomographischen Aufnahmen Ablösungen an den inneren Verbindungsflächen sichtbar werden. Letztere entstehen wiederum durch innere Spannungen während Temperaturänderungen. Die leitende Verbindung zur Kühlplatte wurde mit Hilfe neuer Beschichtungsverfahren möglich", so Degischer.

Von TU-Seite haben Chemiker (Ass.Prof. C. Edtmaier), Physiker (Prof. C. Eisenmenger-Sittner), Mikromechaniker (Prof. H. Böhm) und Werkstoffwissenschafter neben zwei österreichischen Partnern und anderen 35 europäischen Forschungsinstitutionen und Firmen am Forschungsprojekt "EXTREMAT" mitgearbeitet. Vier Doktoranden führten die wissenschaftlichen Arbeiten für den Projektteil der TU erfolgreich durch, wofür in den vergangenen 4 Jahren fast 1 Million Euro aufgewendet wurde, die die EU-Kommission zu etwa 50 Prozent förderte.

Fotodownload: https://www.tuwien.ac.at/index.php?id=8822

Video: http://www.tuwien.ac.at/flash_video/090507metall_mit_diamanten/

Rückfragehinweis:
O.Univ.Prof. Dipl.-Ing. Dr. H.Peter Degischer
Institut für Werkstoffwissenschaft und Werkstofftechnologie
Technische Universität Wien
Karlsplatz 13, 1040 Wien
T +43/1/58801 - 30801
F +43/1/58801 - 30899
E hpdegi@pop.tuwien.ac.at
Aussender:
Mag. Daniela Hallegger
TU Wien - PR und Kommunikation
Operngasse 11/E011, A-1040 Wien
T +43-1-58801-41027
F +43-1-58801-41093
E daniela.hallegger@tuwien.ac.at

Werner Sommer | idw
Weitere Informationen:
http://www.tuwien.ac.at/pr
http://www.tuwien.ac.at/index.php?id=8822

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen
27.06.2017 | Fraunhofer IFAM

nachricht Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter
23.06.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie