Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltrekord: Materialforschung bei mehr als 6 Mio. Atmosphären

24.10.2012
Völlig neue Dimensionen für die Materialwissenschaften eröffnet eine neue, an der Universität Bayreuth entwickelte Forschungstechnik.

Erstmals ist es unter normalen Raumtemperaturen im Laboratorium gelungen, extrem hohe statische Drücke von mehr als 6 Mio. Atmosphären (600 Gigapascal) zu erzeugen. Werden Materialien derartigen Drücken ausgesetzt, ändern sie ihre gewohnten chemischen und physikalischen Eigenschaften und entwickeln neuartige Strukturen.


Schematische Darstellung der zweistufig aufgebauten Diamantstempelzelle (links unten): Zwischen den Flächen der beiden Diamant-Einkristalle sind zwei erheblich kleinere nanokristalline Diamanten fixiert. Zwischen diesen wird die Materialprobe komprimiert. - Die Abbildung zeigt das bei einem Druck von 6,4 Mio. Atmosphären (= 640 Gigapascal) entstandene Röntgen-Beugungsmuster einer Mischung aus Rhenium und Gold. Noch nie zuvor wurde unter Laborbedingungen ein derart hoher statischer Druck erzeugt.

Abb.: Prof. Dr. Natalia Dubrovinskaia, Universität Bayreuth; zur Veröffentlichung frei.

Im Forschungsjournal "Nature Communications" berichtet ein internationales Forschungsteam mit Prof. Dr. Natalia Dubrovinskaia und Prof. Dr. Leonid Dubrovinsky (beide Universität Bayreuth) über das bahnbrechende Verfahren.

Weitreichende Folgen für zahlreiche Wissenschaftszweige

In enger Zusammenarbeit mit Wissenschaftlern der Universität Chicago und der Universität Antwerpen konnte mit dem in Bayreuth konzipierten Verfahren ein Rekord von rund 6,4 Millionen Atmosphären (640 Gigapascal) erzielt werden. Dieser Druck ist sechs Millionen Mal so stark wie der Luftdruck auf der Erdoberfläche und eineinhalb Mal so stark wie der Druck, der im Zentrum der Erde herrscht. Bisher wurden in der Materialforschung höchstens rund 420 Gigapascal erreicht.
"Wenn wir die Eigenschaften, Strukturen und Verhaltensweisen von Materialien unter derart extremen Bedingungen erforschen können, hat das weitreichende Auswirkungen auf zahlreiche Wissenschaftszweige, insbesondere die Geowissenschaften, die Kosmologie, die Chemie und die Physik kondensierter Materie", erklärt Prof. Dr. Leonid Dubrovinsky vom Bayerischen Geoinstitut, einem Forschungszentrum der Universität Bayreuth. "Wir haben beispielsweise ganz neue Chancen, um die Entstehung der Erde zu erforschen oder um herauszufinden, wie sich Eisen unter extremen Drücken verhält." Eisen ist das Material, das im Erdkern am häufigsten vorkommt.

Superharte nanostrukturierte Diamanten

Die neue Forschungstechnik ist eine – im Ergebnis revolutionäre – Weiterentwicklung von Diamantstempelzellen (diamond anvil cells), die in der Materialforschung schon seit längerem zum Einsatz kommen. Das Prinzip dieser Apparaturen: Die Probe des zu untersuchenden Materials wird zwischen den Flächen zweier Diamanten platziert. Diese Diamanten pressen die Materialprobe aus entgegensetzten Richtungen zusammen. Sind die Drücke, die von beiden Seiten auf die Probe einwirken, hoch genug, kann das Material seine inneren Strukturen grundlegend ändern.
In diesen herkömmlichen Diamantstempelzellen lassen sich mit relativ hohem technischen Aufwand Drücke bis zu ca. 250 Gigapascal generieren. Doch mit einer kleinen, aber entscheidenden Modifikation haben die Bayreuther Wissenschaftler diesen Wert um rund 150 Prozent steigern können. Sie verwenden dafür Diamant-Einkristalle mit jeweils ca. 0,25 Karat. Diese Diamanten kommen jetzt aber nicht mehr direkt mit der Materialprobe in Berührung. Vielmehr wird auf jeder der einander gegenüberliegenden Diamantflächen ein halbkugelförmiger nanokristalliner Diamant befestigt, der einen Durchmesser von 20 bis 50 Mikrometern – also von 0,02 bis 0,05 Millimetern – hat. Die winzigen runden Köpfe dieser Diamanten liegen präzise einander gegenüber. Zwischen ihnen wird nun die Materialprobe platziert.

Die Pointe dieser Konstruktion liegt darin, dass die Diamantstempelzelle einen zweistufigen Aufbau erhält. Der Druck, der von den gegenüberliegenden Einkristallen ausgeht, konzentriert sich jetzt in den winzigen „Köpfen“ der beiden halbkugelförmigen Diamanten. Weshalb können diese der enormen Drucksteigerung standhalten? Der Grund liegt in ihrem inneren Aufbau. Die Diamanten werden deshalb als nanokristallin bezeichnet, weil sie sich aus winzigen Nanopartikeln zusammensetzen. Physikalisch gesprochen: Sie besitzen eine Korngröße von weniger als 50 Nanometern. Im Vergleich mit den Diamant-Einkristallen, auf denen sie befestigt werden, verfügen sie deshalb über eine viel höhere Druckfestigkeit. Denn je geringer die Korngröße eines Diamants ist, desto robuster verhält er sich unter extremen Drücken und Temperaturen.

Auf dem Weg zu neuen Höchstdruck-Rekorden

"Nanokristalline Diamanten könnten sich für die materialwissenschaftliche Hochdruckforschung als Material der Zukunft erweisen", erklärt Prof. Dr. Natalia Dubrovinskaia, Heisenberg-Professorin für Materialphysik und Technologie bei extremen Bedingungen an der Universität Bayreuth. Diese Diamanten lassen sich aus glasigem Carbon mithilfe einer neuen Hochdruck-Synthesetechnik herstellen, und zwar auf relativ kostengünstige Weise.

Die neue Forschungstechnik wurde in Kooperation mit der Universität Chicago erprobt, genauer: mit der Advanced Photon Source des Argonne National Laboratory (ANL). Hier haben die Bayreuther Wissenschaftler gemeinsam mit U.S.-amerikanischen Kollegen Experimente auf der Basis von Synchrotronstrahlung durchgeführt, einer äußerst intensiven Lichtstrahlung, die durch eine Beamline ausgerichtet und gefiltert wird. Mit einer hochleistungsfähigen Röntgen-Beugungstechnik haben sie winzige Materialproben untersucht, die eine Dicke von weniger als 0,001 Millimetern hatten. Das ANL zählt zu den größten Forschungsinstituten des Energieministeriums der Vereinigten Staaten.

Am Ende des in "Nature Communications" veröffentlichten Beitrags zeigt sich das internationale Forschungsteam zuversichtlich, dass sich die in der Materialforschung eingesetzten Drücke mithilfe des neuen Verfahrens erheblich steigern lassen. Drücke von 1 Terapascal – also von 10 Millionen Atmosphären – sind aus der Sicht der Autoren kein unrealistisches Ziel.

Veröffentlichung:

Dubrovinsky, L. et al.
Implementation of micro-ball nanodiamond anvils
for high-pressure studies above 6 Mbar.
Nat. Commun. 3:1163
doi 10.1038/ncomms2160 (2012)

Ansprechpartner:

Prof. Dr. Natalia Dubrovinskaia
Labor für Kristallographie
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921-55 3880 oder 3881
E-Mail: Natalia.Dubrovinskaia@uni-bayreuth.de

Prof. Dr. Leonid Dubrovinsky
Bayerisches Geoinstitut (BGI)
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921-55 3736 oder 3707
E-Mail: Leonid.Dubrovinsky@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht CAU-Forschungsteam entwickelt neues Verbundmaterial aus Kohlenstoffnanoröhren
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Material mit vielversprechenden Eigenschaften
22.11.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Autonomes Fahren – und dann?

22.11.2017 | Verkehr Logistik

Material mit vielversprechenden Eigenschaften

22.11.2017 | Materialwissenschaften

Forscherteam am IST Austria definiert Funktion eines rätselhaften Synapsen-Proteins

22.11.2017 | Biowissenschaften Chemie