Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltrekord: Materialforschung bei mehr als 6 Mio. Atmosphären

24.10.2012
Völlig neue Dimensionen für die Materialwissenschaften eröffnet eine neue, an der Universität Bayreuth entwickelte Forschungstechnik.

Erstmals ist es unter normalen Raumtemperaturen im Laboratorium gelungen, extrem hohe statische Drücke von mehr als 6 Mio. Atmosphären (600 Gigapascal) zu erzeugen. Werden Materialien derartigen Drücken ausgesetzt, ändern sie ihre gewohnten chemischen und physikalischen Eigenschaften und entwickeln neuartige Strukturen.


Schematische Darstellung der zweistufig aufgebauten Diamantstempelzelle (links unten): Zwischen den Flächen der beiden Diamant-Einkristalle sind zwei erheblich kleinere nanokristalline Diamanten fixiert. Zwischen diesen wird die Materialprobe komprimiert. - Die Abbildung zeigt das bei einem Druck von 6,4 Mio. Atmosphären (= 640 Gigapascal) entstandene Röntgen-Beugungsmuster einer Mischung aus Rhenium und Gold. Noch nie zuvor wurde unter Laborbedingungen ein derart hoher statischer Druck erzeugt.

Abb.: Prof. Dr. Natalia Dubrovinskaia, Universität Bayreuth; zur Veröffentlichung frei.

Im Forschungsjournal "Nature Communications" berichtet ein internationales Forschungsteam mit Prof. Dr. Natalia Dubrovinskaia und Prof. Dr. Leonid Dubrovinsky (beide Universität Bayreuth) über das bahnbrechende Verfahren.

Weitreichende Folgen für zahlreiche Wissenschaftszweige

In enger Zusammenarbeit mit Wissenschaftlern der Universität Chicago und der Universität Antwerpen konnte mit dem in Bayreuth konzipierten Verfahren ein Rekord von rund 6,4 Millionen Atmosphären (640 Gigapascal) erzielt werden. Dieser Druck ist sechs Millionen Mal so stark wie der Luftdruck auf der Erdoberfläche und eineinhalb Mal so stark wie der Druck, der im Zentrum der Erde herrscht. Bisher wurden in der Materialforschung höchstens rund 420 Gigapascal erreicht.
"Wenn wir die Eigenschaften, Strukturen und Verhaltensweisen von Materialien unter derart extremen Bedingungen erforschen können, hat das weitreichende Auswirkungen auf zahlreiche Wissenschaftszweige, insbesondere die Geowissenschaften, die Kosmologie, die Chemie und die Physik kondensierter Materie", erklärt Prof. Dr. Leonid Dubrovinsky vom Bayerischen Geoinstitut, einem Forschungszentrum der Universität Bayreuth. "Wir haben beispielsweise ganz neue Chancen, um die Entstehung der Erde zu erforschen oder um herauszufinden, wie sich Eisen unter extremen Drücken verhält." Eisen ist das Material, das im Erdkern am häufigsten vorkommt.

Superharte nanostrukturierte Diamanten

Die neue Forschungstechnik ist eine – im Ergebnis revolutionäre – Weiterentwicklung von Diamantstempelzellen (diamond anvil cells), die in der Materialforschung schon seit längerem zum Einsatz kommen. Das Prinzip dieser Apparaturen: Die Probe des zu untersuchenden Materials wird zwischen den Flächen zweier Diamanten platziert. Diese Diamanten pressen die Materialprobe aus entgegensetzten Richtungen zusammen. Sind die Drücke, die von beiden Seiten auf die Probe einwirken, hoch genug, kann das Material seine inneren Strukturen grundlegend ändern.
In diesen herkömmlichen Diamantstempelzellen lassen sich mit relativ hohem technischen Aufwand Drücke bis zu ca. 250 Gigapascal generieren. Doch mit einer kleinen, aber entscheidenden Modifikation haben die Bayreuther Wissenschaftler diesen Wert um rund 150 Prozent steigern können. Sie verwenden dafür Diamant-Einkristalle mit jeweils ca. 0,25 Karat. Diese Diamanten kommen jetzt aber nicht mehr direkt mit der Materialprobe in Berührung. Vielmehr wird auf jeder der einander gegenüberliegenden Diamantflächen ein halbkugelförmiger nanokristalliner Diamant befestigt, der einen Durchmesser von 20 bis 50 Mikrometern – also von 0,02 bis 0,05 Millimetern – hat. Die winzigen runden Köpfe dieser Diamanten liegen präzise einander gegenüber. Zwischen ihnen wird nun die Materialprobe platziert.

Die Pointe dieser Konstruktion liegt darin, dass die Diamantstempelzelle einen zweistufigen Aufbau erhält. Der Druck, der von den gegenüberliegenden Einkristallen ausgeht, konzentriert sich jetzt in den winzigen „Köpfen“ der beiden halbkugelförmigen Diamanten. Weshalb können diese der enormen Drucksteigerung standhalten? Der Grund liegt in ihrem inneren Aufbau. Die Diamanten werden deshalb als nanokristallin bezeichnet, weil sie sich aus winzigen Nanopartikeln zusammensetzen. Physikalisch gesprochen: Sie besitzen eine Korngröße von weniger als 50 Nanometern. Im Vergleich mit den Diamant-Einkristallen, auf denen sie befestigt werden, verfügen sie deshalb über eine viel höhere Druckfestigkeit. Denn je geringer die Korngröße eines Diamants ist, desto robuster verhält er sich unter extremen Drücken und Temperaturen.

Auf dem Weg zu neuen Höchstdruck-Rekorden

"Nanokristalline Diamanten könnten sich für die materialwissenschaftliche Hochdruckforschung als Material der Zukunft erweisen", erklärt Prof. Dr. Natalia Dubrovinskaia, Heisenberg-Professorin für Materialphysik und Technologie bei extremen Bedingungen an der Universität Bayreuth. Diese Diamanten lassen sich aus glasigem Carbon mithilfe einer neuen Hochdruck-Synthesetechnik herstellen, und zwar auf relativ kostengünstige Weise.

Die neue Forschungstechnik wurde in Kooperation mit der Universität Chicago erprobt, genauer: mit der Advanced Photon Source des Argonne National Laboratory (ANL). Hier haben die Bayreuther Wissenschaftler gemeinsam mit U.S.-amerikanischen Kollegen Experimente auf der Basis von Synchrotronstrahlung durchgeführt, einer äußerst intensiven Lichtstrahlung, die durch eine Beamline ausgerichtet und gefiltert wird. Mit einer hochleistungsfähigen Röntgen-Beugungstechnik haben sie winzige Materialproben untersucht, die eine Dicke von weniger als 0,001 Millimetern hatten. Das ANL zählt zu den größten Forschungsinstituten des Energieministeriums der Vereinigten Staaten.

Am Ende des in "Nature Communications" veröffentlichten Beitrags zeigt sich das internationale Forschungsteam zuversichtlich, dass sich die in der Materialforschung eingesetzten Drücke mithilfe des neuen Verfahrens erheblich steigern lassen. Drücke von 1 Terapascal – also von 10 Millionen Atmosphären – sind aus der Sicht der Autoren kein unrealistisches Ziel.

Veröffentlichung:

Dubrovinsky, L. et al.
Implementation of micro-ball nanodiamond anvils
for high-pressure studies above 6 Mbar.
Nat. Commun. 3:1163
doi 10.1038/ncomms2160 (2012)

Ansprechpartner:

Prof. Dr. Natalia Dubrovinskaia
Labor für Kristallographie
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921-55 3880 oder 3881
E-Mail: Natalia.Dubrovinskaia@uni-bayreuth.de

Prof. Dr. Leonid Dubrovinsky
Bayerisches Geoinstitut (BGI)
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921-55 3736 oder 3707
E-Mail: Leonid.Dubrovinsky@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Stahl ist nicht gleich Stahl: Informatiker und Materialforscher optimieren Werkstoffklassifizierung
19.02.2018 | Universität des Saarlandes

nachricht Wenn Eiweiße einander die Hand geben
19.02.2018 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Markierung für Krebsstammzellen

20.02.2018 | Biowissenschaften Chemie

Da haben wir den Salat: Erste Ernte aus aufbereitetem Abwasser im Forschungsprojekt HypoWave

20.02.2018 | Agrar- Forstwissenschaften

Die Brücke, die sich dehnen kann

20.02.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics