Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltrekord: Materialforschung bei mehr als 6 Mio. Atmosphären

24.10.2012
Völlig neue Dimensionen für die Materialwissenschaften eröffnet eine neue, an der Universität Bayreuth entwickelte Forschungstechnik.

Erstmals ist es unter normalen Raumtemperaturen im Laboratorium gelungen, extrem hohe statische Drücke von mehr als 6 Mio. Atmosphären (600 Gigapascal) zu erzeugen. Werden Materialien derartigen Drücken ausgesetzt, ändern sie ihre gewohnten chemischen und physikalischen Eigenschaften und entwickeln neuartige Strukturen.


Schematische Darstellung der zweistufig aufgebauten Diamantstempelzelle (links unten): Zwischen den Flächen der beiden Diamant-Einkristalle sind zwei erheblich kleinere nanokristalline Diamanten fixiert. Zwischen diesen wird die Materialprobe komprimiert. - Die Abbildung zeigt das bei einem Druck von 6,4 Mio. Atmosphären (= 640 Gigapascal) entstandene Röntgen-Beugungsmuster einer Mischung aus Rhenium und Gold. Noch nie zuvor wurde unter Laborbedingungen ein derart hoher statischer Druck erzeugt.

Abb.: Prof. Dr. Natalia Dubrovinskaia, Universität Bayreuth; zur Veröffentlichung frei.

Im Forschungsjournal "Nature Communications" berichtet ein internationales Forschungsteam mit Prof. Dr. Natalia Dubrovinskaia und Prof. Dr. Leonid Dubrovinsky (beide Universität Bayreuth) über das bahnbrechende Verfahren.

Weitreichende Folgen für zahlreiche Wissenschaftszweige

In enger Zusammenarbeit mit Wissenschaftlern der Universität Chicago und der Universität Antwerpen konnte mit dem in Bayreuth konzipierten Verfahren ein Rekord von rund 6,4 Millionen Atmosphären (640 Gigapascal) erzielt werden. Dieser Druck ist sechs Millionen Mal so stark wie der Luftdruck auf der Erdoberfläche und eineinhalb Mal so stark wie der Druck, der im Zentrum der Erde herrscht. Bisher wurden in der Materialforschung höchstens rund 420 Gigapascal erreicht.
"Wenn wir die Eigenschaften, Strukturen und Verhaltensweisen von Materialien unter derart extremen Bedingungen erforschen können, hat das weitreichende Auswirkungen auf zahlreiche Wissenschaftszweige, insbesondere die Geowissenschaften, die Kosmologie, die Chemie und die Physik kondensierter Materie", erklärt Prof. Dr. Leonid Dubrovinsky vom Bayerischen Geoinstitut, einem Forschungszentrum der Universität Bayreuth. "Wir haben beispielsweise ganz neue Chancen, um die Entstehung der Erde zu erforschen oder um herauszufinden, wie sich Eisen unter extremen Drücken verhält." Eisen ist das Material, das im Erdkern am häufigsten vorkommt.

Superharte nanostrukturierte Diamanten

Die neue Forschungstechnik ist eine – im Ergebnis revolutionäre – Weiterentwicklung von Diamantstempelzellen (diamond anvil cells), die in der Materialforschung schon seit längerem zum Einsatz kommen. Das Prinzip dieser Apparaturen: Die Probe des zu untersuchenden Materials wird zwischen den Flächen zweier Diamanten platziert. Diese Diamanten pressen die Materialprobe aus entgegensetzten Richtungen zusammen. Sind die Drücke, die von beiden Seiten auf die Probe einwirken, hoch genug, kann das Material seine inneren Strukturen grundlegend ändern.
In diesen herkömmlichen Diamantstempelzellen lassen sich mit relativ hohem technischen Aufwand Drücke bis zu ca. 250 Gigapascal generieren. Doch mit einer kleinen, aber entscheidenden Modifikation haben die Bayreuther Wissenschaftler diesen Wert um rund 150 Prozent steigern können. Sie verwenden dafür Diamant-Einkristalle mit jeweils ca. 0,25 Karat. Diese Diamanten kommen jetzt aber nicht mehr direkt mit der Materialprobe in Berührung. Vielmehr wird auf jeder der einander gegenüberliegenden Diamantflächen ein halbkugelförmiger nanokristalliner Diamant befestigt, der einen Durchmesser von 20 bis 50 Mikrometern – also von 0,02 bis 0,05 Millimetern – hat. Die winzigen runden Köpfe dieser Diamanten liegen präzise einander gegenüber. Zwischen ihnen wird nun die Materialprobe platziert.

Die Pointe dieser Konstruktion liegt darin, dass die Diamantstempelzelle einen zweistufigen Aufbau erhält. Der Druck, der von den gegenüberliegenden Einkristallen ausgeht, konzentriert sich jetzt in den winzigen „Köpfen“ der beiden halbkugelförmigen Diamanten. Weshalb können diese der enormen Drucksteigerung standhalten? Der Grund liegt in ihrem inneren Aufbau. Die Diamanten werden deshalb als nanokristallin bezeichnet, weil sie sich aus winzigen Nanopartikeln zusammensetzen. Physikalisch gesprochen: Sie besitzen eine Korngröße von weniger als 50 Nanometern. Im Vergleich mit den Diamant-Einkristallen, auf denen sie befestigt werden, verfügen sie deshalb über eine viel höhere Druckfestigkeit. Denn je geringer die Korngröße eines Diamants ist, desto robuster verhält er sich unter extremen Drücken und Temperaturen.

Auf dem Weg zu neuen Höchstdruck-Rekorden

"Nanokristalline Diamanten könnten sich für die materialwissenschaftliche Hochdruckforschung als Material der Zukunft erweisen", erklärt Prof. Dr. Natalia Dubrovinskaia, Heisenberg-Professorin für Materialphysik und Technologie bei extremen Bedingungen an der Universität Bayreuth. Diese Diamanten lassen sich aus glasigem Carbon mithilfe einer neuen Hochdruck-Synthesetechnik herstellen, und zwar auf relativ kostengünstige Weise.

Die neue Forschungstechnik wurde in Kooperation mit der Universität Chicago erprobt, genauer: mit der Advanced Photon Source des Argonne National Laboratory (ANL). Hier haben die Bayreuther Wissenschaftler gemeinsam mit U.S.-amerikanischen Kollegen Experimente auf der Basis von Synchrotronstrahlung durchgeführt, einer äußerst intensiven Lichtstrahlung, die durch eine Beamline ausgerichtet und gefiltert wird. Mit einer hochleistungsfähigen Röntgen-Beugungstechnik haben sie winzige Materialproben untersucht, die eine Dicke von weniger als 0,001 Millimetern hatten. Das ANL zählt zu den größten Forschungsinstituten des Energieministeriums der Vereinigten Staaten.

Am Ende des in "Nature Communications" veröffentlichten Beitrags zeigt sich das internationale Forschungsteam zuversichtlich, dass sich die in der Materialforschung eingesetzten Drücke mithilfe des neuen Verfahrens erheblich steigern lassen. Drücke von 1 Terapascal – also von 10 Millionen Atmosphären – sind aus der Sicht der Autoren kein unrealistisches Ziel.

Veröffentlichung:

Dubrovinsky, L. et al.
Implementation of micro-ball nanodiamond anvils
for high-pressure studies above 6 Mbar.
Nat. Commun. 3:1163
doi 10.1038/ncomms2160 (2012)

Ansprechpartner:

Prof. Dr. Natalia Dubrovinskaia
Labor für Kristallographie
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921-55 3880 oder 3881
E-Mail: Natalia.Dubrovinskaia@uni-bayreuth.de

Prof. Dr. Leonid Dubrovinsky
Bayerisches Geoinstitut (BGI)
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921-55 3736 oder 3707
E-Mail: Leonid.Dubrovinsky@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik