Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weiße Biotechnologie: Protein lässt maßgeschneidertes Material wachsen

18.02.2013
Glänzendes Perlmutt ist nicht nur schön anzusehen. Seine Festigkeit, Härte und der dichte, schichtartige Aufbau machen das Material für unterschiedliche Industrieanwendungen interessant:

Als biologisches Kompositmaterial vereinigt es viele Vorteile, die sonst über den rohstoffintensiven Weg der Chemischen Nanotechnologie ermöglicht werden. Am INM – Leibniz-Institut für Neue Materialien haben Forscher nun einen Weg gefunden, bei dem sie das Protein einer Meeresschnecke dazu verwenden, gezielt Kalk-Arten, zu denen auch Perlmutt gehört, herzustellen. Die Ergebnisse wurden jüngst in der Fachzeitschrift PLOS ONE veröffentlicht.


Proteine aus der Haliotis Schnecke bewirken das Wachstum maßgeschneiderter Materialien.
Quelle: Uwe Bellhäuser; frei nur im Zusammenhang mit dieser Meldung

Dazu koppelten die Forscher das Protein Perlucin aus der Haliotis-Schnecke (Seeohr) an das Grün-Fluoreszierende-Protein (GFP) und träufelten zu dieser Lösung Carbonat- und Kalziumionen. Je nachdem, in welcher Reihenfolge die Wissenschaftler die Ionen zur Lösung gaben, und je nach pH-Wert, entstanden unterschiedliche Kalk-Arten in Form verschiedener Kristalle. „Die Kopplung von GFP an Perlucin ermöglicht zweierlei“, sagt Ingrid Weiss, Leiterin des Programmbereichs Biomineralisation. „GFP erhöht die Löslichkeit von Perlucin; nur so können wir überhaupt in Wasser damit arbeiten. Andererseits hat GFP auch selbst einen Einfluss darauf, welche Kalk-Arten entstehen“, erklärt die Biologin weiter.

Echtes Perlmutt setzt sich aus anorganischen Kalziumcarbonat-Schichten zusammen, die durch organische Bestandteile wie Chitin, Kollagen oder Proteine miteinander „verklebt“ sind. Die Rolle dieser Proteine auf das Wachstum des Perlmutt, wie zum Beispiel bei Perlen oder Muschelschalen, ist zurzeit nicht geklärt. Bisher geht man davon aus, dass sie sowohl die Kristallisation der Ionen steuern, als auch selbst am Aufbau des Perlmutt beteiligt sind.

„Ebenso verhält es sich bei unserem System im Reagenzglas“, meint Weiss, „wenn wir die entstandenen Kalk-Arten im Elektronenmikroskop oder mittels Fluoreszenzabbildung untersuchen, sehen wir, dass GFP ebenfalls als „Abstandhalter“ für die Kalziumcarbonatplättchen und –kristalle dient, also am Wachstum der Kristalle möglicherweise beteiligt ist.“ Die Forscherin gibt jedoch zu bedenken, dass die genaue Rolle des GFP noch nicht geklärt sei. GFP stamme ursprünglich aus einer Qualle, die es sicher nicht dazu nutze, Mineralien hervorzubringen. Ob es tatsächlich zum Wachstum beitrage, oder nur zufällig als Abstandhalter diente, müssten weitere Forschungsarbeiten klären.

Die Programmbereichsleiterin sieht in den Ergebnissen ihres Teams einen Meilenstein für die zukünftige Entwicklung der weißen Biotechnologie: „Wenn wir die „Wachstumsproteine“ von Muscheln durch GFP in eine lösliche Form bringen, ist der erste Schritt getan, sie in Bakterien zu exprimieren.“ Damit könnten, ähnlich wie heutzutage Insulin im Großmaßstab, „biologische Nanopartikel“ hergestellt werden. „Dann können wir durch die Zugabe von billigem und reichlich vorhandenem, gelöstem Kalk in großen Reaktionsgefäßen unsere Wunsch-Kalk-Arten, wie Perlmutt oder die sogenannte „Wasserkocher-Modifikation“ herstellen. Wenn wir nun noch die Proteine der Muscheln und Schnecken variieren und nicht nur Kalziumcarbonat, sondern auch andere Carbonate verwenden, die in der Natur reichlich vorhanden sind, haben wir ein Baukastensystem, das uns eine Vielzahl von Kompositmaterialien auf biologischem Wege eröffnet“, fasst die Wissenschaftlerin abschließend zusammen.

Originalpublikation: Weber E, Guth C, Weiss IM (2012) GFP Facilitates Native Purification of Recombinant Perlucin Derivatives and Delays the Precipitation of Calcium Carbonate. PLoS ONE 7(10): e46653. doi:10.1371/journal.pone.0046653

Anprechpartner:
PD Dr. habil. Ingrid Weiss
Leiterin Programmbereich Biomineralisation
Tel: 0681-9300-318
E-Mail: ingrid.weiss@inm-gmbh.de
Das INM erforscht und entwickelt Materialien – für heute, morgen und übermorgen. Chemiker, Physiker, Biologen, Material- und Ingenieurwissenschaftler prägen die Arbeit am INM. Vom Molekül bis zur Pilotfertigung richten die Forscher ihren Blick auf drei wesentliche Fragen: Welche Materialeigenschaften sind neu, wie untersucht man sie und wie kann man sie zukünftig für industrielle und lebensnahe Anwendungen nutzen?

Das INM - Leibniz-Institut für Neue Materialien gGmbH mit Sitz in Saarbrücken ist ein international sichtbares Zentrum für Materialforschung. Es kooperiert wissenschaftlich mit nationalen und internationalen Instituten und entwickelt für Unternehmen in aller Welt. Das INM ist ein Institut der Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz e.V. und beschäftigt rund 180 Mitarbeiter. Seine Forschung gliedert sich in die drei Felder Chemische Nanotechnologie, Grenzflächenmaterialien und Materialien in der Biologie.

Dr. Carola Jung | idw
Weitere Informationen:
http://www.inm-gmbh.de
http://www.leibniz-gemeinschaft.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum
07.12.2016 | Technische Universität Graz

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rückgang großer fruchtfressender Vögel bedroht Tropenwälder

07.12.2016 | Biowissenschaften Chemie

Wenn das Handy heimlich zuhört: Abwehr ungewollten Audiotrackings durch akustische Cookies

07.12.2016 | Informationstechnologie

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops