Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weiße Biotechnologie: Protein lässt maßgeschneidertes Material wachsen

18.02.2013
Glänzendes Perlmutt ist nicht nur schön anzusehen. Seine Festigkeit, Härte und der dichte, schichtartige Aufbau machen das Material für unterschiedliche Industrieanwendungen interessant:

Als biologisches Kompositmaterial vereinigt es viele Vorteile, die sonst über den rohstoffintensiven Weg der Chemischen Nanotechnologie ermöglicht werden. Am INM – Leibniz-Institut für Neue Materialien haben Forscher nun einen Weg gefunden, bei dem sie das Protein einer Meeresschnecke dazu verwenden, gezielt Kalk-Arten, zu denen auch Perlmutt gehört, herzustellen. Die Ergebnisse wurden jüngst in der Fachzeitschrift PLOS ONE veröffentlicht.


Proteine aus der Haliotis Schnecke bewirken das Wachstum maßgeschneiderter Materialien.
Quelle: Uwe Bellhäuser; frei nur im Zusammenhang mit dieser Meldung

Dazu koppelten die Forscher das Protein Perlucin aus der Haliotis-Schnecke (Seeohr) an das Grün-Fluoreszierende-Protein (GFP) und träufelten zu dieser Lösung Carbonat- und Kalziumionen. Je nachdem, in welcher Reihenfolge die Wissenschaftler die Ionen zur Lösung gaben, und je nach pH-Wert, entstanden unterschiedliche Kalk-Arten in Form verschiedener Kristalle. „Die Kopplung von GFP an Perlucin ermöglicht zweierlei“, sagt Ingrid Weiss, Leiterin des Programmbereichs Biomineralisation. „GFP erhöht die Löslichkeit von Perlucin; nur so können wir überhaupt in Wasser damit arbeiten. Andererseits hat GFP auch selbst einen Einfluss darauf, welche Kalk-Arten entstehen“, erklärt die Biologin weiter.

Echtes Perlmutt setzt sich aus anorganischen Kalziumcarbonat-Schichten zusammen, die durch organische Bestandteile wie Chitin, Kollagen oder Proteine miteinander „verklebt“ sind. Die Rolle dieser Proteine auf das Wachstum des Perlmutt, wie zum Beispiel bei Perlen oder Muschelschalen, ist zurzeit nicht geklärt. Bisher geht man davon aus, dass sie sowohl die Kristallisation der Ionen steuern, als auch selbst am Aufbau des Perlmutt beteiligt sind.

„Ebenso verhält es sich bei unserem System im Reagenzglas“, meint Weiss, „wenn wir die entstandenen Kalk-Arten im Elektronenmikroskop oder mittels Fluoreszenzabbildung untersuchen, sehen wir, dass GFP ebenfalls als „Abstandhalter“ für die Kalziumcarbonatplättchen und –kristalle dient, also am Wachstum der Kristalle möglicherweise beteiligt ist.“ Die Forscherin gibt jedoch zu bedenken, dass die genaue Rolle des GFP noch nicht geklärt sei. GFP stamme ursprünglich aus einer Qualle, die es sicher nicht dazu nutze, Mineralien hervorzubringen. Ob es tatsächlich zum Wachstum beitrage, oder nur zufällig als Abstandhalter diente, müssten weitere Forschungsarbeiten klären.

Die Programmbereichsleiterin sieht in den Ergebnissen ihres Teams einen Meilenstein für die zukünftige Entwicklung der weißen Biotechnologie: „Wenn wir die „Wachstumsproteine“ von Muscheln durch GFP in eine lösliche Form bringen, ist der erste Schritt getan, sie in Bakterien zu exprimieren.“ Damit könnten, ähnlich wie heutzutage Insulin im Großmaßstab, „biologische Nanopartikel“ hergestellt werden. „Dann können wir durch die Zugabe von billigem und reichlich vorhandenem, gelöstem Kalk in großen Reaktionsgefäßen unsere Wunsch-Kalk-Arten, wie Perlmutt oder die sogenannte „Wasserkocher-Modifikation“ herstellen. Wenn wir nun noch die Proteine der Muscheln und Schnecken variieren und nicht nur Kalziumcarbonat, sondern auch andere Carbonate verwenden, die in der Natur reichlich vorhanden sind, haben wir ein Baukastensystem, das uns eine Vielzahl von Kompositmaterialien auf biologischem Wege eröffnet“, fasst die Wissenschaftlerin abschließend zusammen.

Originalpublikation: Weber E, Guth C, Weiss IM (2012) GFP Facilitates Native Purification of Recombinant Perlucin Derivatives and Delays the Precipitation of Calcium Carbonate. PLoS ONE 7(10): e46653. doi:10.1371/journal.pone.0046653

Anprechpartner:
PD Dr. habil. Ingrid Weiss
Leiterin Programmbereich Biomineralisation
Tel: 0681-9300-318
E-Mail: ingrid.weiss@inm-gmbh.de
Das INM erforscht und entwickelt Materialien – für heute, morgen und übermorgen. Chemiker, Physiker, Biologen, Material- und Ingenieurwissenschaftler prägen die Arbeit am INM. Vom Molekül bis zur Pilotfertigung richten die Forscher ihren Blick auf drei wesentliche Fragen: Welche Materialeigenschaften sind neu, wie untersucht man sie und wie kann man sie zukünftig für industrielle und lebensnahe Anwendungen nutzen?

Das INM - Leibniz-Institut für Neue Materialien gGmbH mit Sitz in Saarbrücken ist ein international sichtbares Zentrum für Materialforschung. Es kooperiert wissenschaftlich mit nationalen und internationalen Instituten und entwickelt für Unternehmen in aller Welt. Das INM ist ein Institut der Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz e.V. und beschäftigt rund 180 Mitarbeiter. Seine Forschung gliedert sich in die drei Felder Chemische Nanotechnologie, Grenzflächenmaterialien und Materialien in der Biologie.

Dr. Carola Jung | idw
Weitere Informationen:
http://www.inm-gmbh.de
http://www.leibniz-gemeinschaft.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Bessere Anwendungsmöglichkeiten für Laserlicht
28.03.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Biegsame Touchscreens: Neues Herstellungsverfahren für transparente Elektronik verbessert
28.03.2017 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit