Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf dem Weg zur Superbatterie

28.09.2012
Xinliang Feng, Chemiker am Mainzer Max-Planck-Institut für Polymerforschung, befasst sich mit neuartigen Materialien zur Energiespeicherung und Umwandlung. Die EU-Kommission fördert seine Forschung nun mit 1,5 Millionen Euro.

Der Europäische Forschungsrat vergibt den ERC Starting Grant für angehende Spitzenwissenschaftler an Xinliang Feng vom Max-Planck-Institut für Polymerforschung (MPI-P).

Der in Mainz tätige Chemiker erhält damit für die kommenden fünf Jahre Fördergelder in Höhe von mehr als 1,5 Mio. Euro zum Aufbau einer eigenen Forschungsgruppe. Mit diesen Mitteln kann Feng die Erforschung zweidimensionaler Nanomaterialien fortsetzen und intensivieren. Solche nur aus einer Lage Atomen bestehenden Schichten, besitzen einzigartige Funktionen und kommen für eine Vielzahl praktischer Anwendungen infrage.

„Die wissenschaftliche Arbeit wird sich auf Materialien für Energiespeicherung und -umwandlung konzentrieren, aber nicht beschränken. Es ist abzusehen, dass die möglichen Anwendungsfelder viel weiter reichen“, erwartet Feng.

Materialsynthese auf Bestellung
Seit Feng 2004 am MPI-P seine Promotion antrat, beschäftigt er sich mit der Synthese und Untersuchung dieser ultradünnen Nanomaterialien, insbesondere von Graphen. Dieser Stoff aus einer Schicht wabenförmig angeordneter Kohlenstoffatome gilt als Versprechen für die Zukunft. Graphen leitet ausgezeichnet Strom und Wärme, es ist sehr leicht und dehnbar, aber dennoch so hart wie ein Diamant und einhundertmal reißfester als Stahl. Seine Eigenschaften variieren je nach Konfiguration und Struktur der Schicht.

Feng möchte verschiedene Graphenformen sowohl durch chemische Synthese als auch mit mechanischen Herstellungsverfahren gewinnen, um bewusst Eigenschaften auf Funktionen und damit die spätere Verwendung abstimmen zu können. Auch aus Metalloxiden, Polymeren und organischen Verbindungen möchte der Chemiker Syntheseverfahren für Nanoschichten mit maßgeschneiderten Funktionen entwickeln.

Nicht nur einzelne Lagen sind in diesem Zusammenhang für Feng interessant: Er wird auch an Methoden arbeiten, um mehrere zweidimensionale Schichten zu Kompositen, also Verbundwerkstoffen, zu kombinieren. Wiederum lassen sich so deren Eigenschaften gezielt vereinen. Theoretisch! Diese einfach anmutende Vorgehensweise erfordert in der Praxis erhebliches wissenschaftliches Know-How und Erfahrung. Einige erfolgversprechende Ergebnisse sind am MPI-P bereits erzielt worden: Der Forschungsgruppe um Direktor Klaus Müllen, der auch Feng angehört, gelang es u.a. eine Materialkomposition für weitaus leistungsfähigere Lithiumionenbatterien zu erzeugen.

Anstatt des Speichermaterials Graphit verwendeten die Wissenschaftler Metalloxide mit wesentlich höherer Ladungskapazität. Da diese aber nicht für den Langzeitgebrauch taugen, ummantelte man sie mit Graphen. Das Verfahren war mit einigen chemischen Tricks verbunden, aber die erreichte verlängerte Akkulaufzeit würden wohl nicht nur die zahllosen Nutzer von Handys und Notebooks als großen Fortschritt empfinden.

Grundlagenforschung praxisorientiert

Für Xinliang Feng war dies nur der Auftakt. Die Verfahren stehen erst am Anfang; sie müssen optimiert und standardisiert werden, um der neuen Stoffgruppe der zweidimensionalen Nanomaterialen den Sprung vom Hoffnungs- zum Leistungsträger innovativer Anwendungen zu ermöglichen. Der Europäische Forschungsrat (ERC) honorierte seine bisher erzielten Ergebnisse, bekundet damit aber auch Erwartungen für die Zukunft.

Der ERC Starting Grant ist eine der Förderlinien mit denen die EU im globalen Wettbewerb um Spitzenforscher wirbt und sie in der ersten Phase ihrer wissenschaftlichen Karriere beim Aufbau einer eigenen Forschungsgruppe unterstützt. Laut eigenen Angaben fördert der ERC 2012 über 500 Forscher und ihre Projekte mit Mitteln in Höhe von circa 800 Millionen Euro. Insgesamt hatten sich über 4.100 Wissenschaftler beworben.

Max-Planck-Institut für Polymerforschung

Presse- und Öffentlichkeitsarbeit:
Stephan Imhof
Tel: 06131 379-132
Fax: 06131 379-330
pr@mpip-mainz.mpg.de


Das 1984 gegründete Max-Planck-Institut für Polymerforschung (MPI-P) zählt zu den international führenden Forschungszentren auf dem Gebiet der Polymerwissenschaft. Durch die Fokussierung auf so genannte weiche Materie und makromolekulare Materialien ist das Max-Planck-Institut für Polymerforschung mit seiner Forschungsausrichtung weltweit einzigartig. Mitarbeiterinnen und Mitarbeiter aus dem In- und Ausland arbeiten im Rahmen der Grundlagenforschung an der Herstellung und Charakterisierung von Polymeren und der Untersuchung ihrer physikalischen und chemischen Eigenschaften. Anfang 2012 waren insgesamt 503 Personen am MPI-P beschäftigt: Die Belegschaft setzte sich aus 109 Wissenschaftlern, 149 Doktoranden und Diplomanden, 70 Gastwissenschaftlern und 175 technischen und Verwaltungsangestellten sowie Hilfskräften zusammen.

Stephan Imhof | Max-Planck-Institut
Weitere Informationen:
http://www.mpip-mainz.mpg.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie