Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf dem Weg zur Superbatterie

28.09.2012
Xinliang Feng, Chemiker am Mainzer Max-Planck-Institut für Polymerforschung, befasst sich mit neuartigen Materialien zur Energiespeicherung und Umwandlung. Die EU-Kommission fördert seine Forschung nun mit 1,5 Millionen Euro.

Der Europäische Forschungsrat vergibt den ERC Starting Grant für angehende Spitzenwissenschaftler an Xinliang Feng vom Max-Planck-Institut für Polymerforschung (MPI-P).

Der in Mainz tätige Chemiker erhält damit für die kommenden fünf Jahre Fördergelder in Höhe von mehr als 1,5 Mio. Euro zum Aufbau einer eigenen Forschungsgruppe. Mit diesen Mitteln kann Feng die Erforschung zweidimensionaler Nanomaterialien fortsetzen und intensivieren. Solche nur aus einer Lage Atomen bestehenden Schichten, besitzen einzigartige Funktionen und kommen für eine Vielzahl praktischer Anwendungen infrage.

„Die wissenschaftliche Arbeit wird sich auf Materialien für Energiespeicherung und -umwandlung konzentrieren, aber nicht beschränken. Es ist abzusehen, dass die möglichen Anwendungsfelder viel weiter reichen“, erwartet Feng.

Materialsynthese auf Bestellung
Seit Feng 2004 am MPI-P seine Promotion antrat, beschäftigt er sich mit der Synthese und Untersuchung dieser ultradünnen Nanomaterialien, insbesondere von Graphen. Dieser Stoff aus einer Schicht wabenförmig angeordneter Kohlenstoffatome gilt als Versprechen für die Zukunft. Graphen leitet ausgezeichnet Strom und Wärme, es ist sehr leicht und dehnbar, aber dennoch so hart wie ein Diamant und einhundertmal reißfester als Stahl. Seine Eigenschaften variieren je nach Konfiguration und Struktur der Schicht.

Feng möchte verschiedene Graphenformen sowohl durch chemische Synthese als auch mit mechanischen Herstellungsverfahren gewinnen, um bewusst Eigenschaften auf Funktionen und damit die spätere Verwendung abstimmen zu können. Auch aus Metalloxiden, Polymeren und organischen Verbindungen möchte der Chemiker Syntheseverfahren für Nanoschichten mit maßgeschneiderten Funktionen entwickeln.

Nicht nur einzelne Lagen sind in diesem Zusammenhang für Feng interessant: Er wird auch an Methoden arbeiten, um mehrere zweidimensionale Schichten zu Kompositen, also Verbundwerkstoffen, zu kombinieren. Wiederum lassen sich so deren Eigenschaften gezielt vereinen. Theoretisch! Diese einfach anmutende Vorgehensweise erfordert in der Praxis erhebliches wissenschaftliches Know-How und Erfahrung. Einige erfolgversprechende Ergebnisse sind am MPI-P bereits erzielt worden: Der Forschungsgruppe um Direktor Klaus Müllen, der auch Feng angehört, gelang es u.a. eine Materialkomposition für weitaus leistungsfähigere Lithiumionenbatterien zu erzeugen.

Anstatt des Speichermaterials Graphit verwendeten die Wissenschaftler Metalloxide mit wesentlich höherer Ladungskapazität. Da diese aber nicht für den Langzeitgebrauch taugen, ummantelte man sie mit Graphen. Das Verfahren war mit einigen chemischen Tricks verbunden, aber die erreichte verlängerte Akkulaufzeit würden wohl nicht nur die zahllosen Nutzer von Handys und Notebooks als großen Fortschritt empfinden.

Grundlagenforschung praxisorientiert

Für Xinliang Feng war dies nur der Auftakt. Die Verfahren stehen erst am Anfang; sie müssen optimiert und standardisiert werden, um der neuen Stoffgruppe der zweidimensionalen Nanomaterialen den Sprung vom Hoffnungs- zum Leistungsträger innovativer Anwendungen zu ermöglichen. Der Europäische Forschungsrat (ERC) honorierte seine bisher erzielten Ergebnisse, bekundet damit aber auch Erwartungen für die Zukunft.

Der ERC Starting Grant ist eine der Förderlinien mit denen die EU im globalen Wettbewerb um Spitzenforscher wirbt und sie in der ersten Phase ihrer wissenschaftlichen Karriere beim Aufbau einer eigenen Forschungsgruppe unterstützt. Laut eigenen Angaben fördert der ERC 2012 über 500 Forscher und ihre Projekte mit Mitteln in Höhe von circa 800 Millionen Euro. Insgesamt hatten sich über 4.100 Wissenschaftler beworben.

Max-Planck-Institut für Polymerforschung

Presse- und Öffentlichkeitsarbeit:
Stephan Imhof
Tel: 06131 379-132
Fax: 06131 379-330
pr@mpip-mainz.mpg.de


Das 1984 gegründete Max-Planck-Institut für Polymerforschung (MPI-P) zählt zu den international führenden Forschungszentren auf dem Gebiet der Polymerwissenschaft. Durch die Fokussierung auf so genannte weiche Materie und makromolekulare Materialien ist das Max-Planck-Institut für Polymerforschung mit seiner Forschungsausrichtung weltweit einzigartig. Mitarbeiterinnen und Mitarbeiter aus dem In- und Ausland arbeiten im Rahmen der Grundlagenforschung an der Herstellung und Charakterisierung von Polymeren und der Untersuchung ihrer physikalischen und chemischen Eigenschaften. Anfang 2012 waren insgesamt 503 Personen am MPI-P beschäftigt: Die Belegschaft setzte sich aus 109 Wissenschaftlern, 149 Doktoranden und Diplomanden, 70 Gastwissenschaftlern und 175 technischen und Verwaltungsangestellten sowie Hilfskräften zusammen.

Stephan Imhof | Max-Planck-Institut
Weitere Informationen:
http://www.mpip-mainz.mpg.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Quantenanomalien: Das Universum in einem Kristall
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Projekt »ADIR«: Laser bergen wertvolle Werkstoffe
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops