Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wechselwirkung von RGD mit magnetischen Formgedächtnislegierungen

14.11.2012
Eine Arbeitsgruppe am Leibniz Institut für Oberflächenmodifizierung e.V. und Translationszentrum für Regenerative Medizin hat zusammen mit der Fakultät für Physik und Geowissenschaften die Wechselwirkung von RGD mit magnetischen Formgedächtnislegierungen untersucht und nun im renommierten Fachjournal „ Advanced Functional Materials“ veröffentlicht (DOI: 10.1002/adfm.201201789).

Mittels Dichtefunktionaltheorie-Computersimulationen, die vom Rechenumfang an die Leistungsfähigkeit aktueller Supercomputer heran reicht, konnten sie nachweisen, wie das RGD Molekül an die Legierung anbindet und dessen Bindungsenergie bestimmt.

Ferromagnetische Formgedächtnislegierungen gehören zu den sogenannten "intelligenten Materialen". Sie können ihre Form im externen Magnetfeld reversibel verändern und bieten so viele neue Anwendungen in der Medizin. In diesem Zusammenhang ist insbesondere die Legierung Eisen-Palladium

(Fe-Pd) interessant, da sie biokompatibel ist und lebendige Zellen an ihr anhaften können.

Diese Adhäsion von Zellen wird durch Rezeptoren an der Zelloberfläche, hauptsächlich sogenannte Integrine, gesteuert. Diese binden an die Aminosäuresequenz Arginin-Glycin-Asparagin (RGD) an, die in vielen Proteinen der extrazellulären Matrix im Körper vorhanden ist. RGD kann jedoch auch von den Zellen selber produziert werden.

Wie stark dieses adhäsionsunterstützende Molekül RGD an Fe-Pd anhaftet, ist entscheidend für die Biokompatibilität und die Nutzung des Materials in der Medizin: Haftet das RGD schwach, wird es von der Zelle abgerissen, diese kann nicht richtig anhaften und stirbt schließlich ab. Die Arbeitsgruppe von Prof. Stefan Mayr (Leibniz Institut für Oberflächenmodifizierung e.V. und Translationszentrum für Regenerative Medizin) hat nun zusammen mit Dr. Mareike Zink (Fakultät für Physik und Geowissenschaften) und den Doktoranden Florian Szillat und Uta Allenstein die Wechselwirkung von RGD mit magnetischen Formgedächtnislegierungen untersucht und gerade in dem renommierten Fachjournal Advanced Functional Materials veröffentlicht. Mittels Dichtefunktionaltheorie-Computersimulationen konnten sie nachweisen, wie das RGD Molekül an die Legierung anbindet und dessen Bindungsenergie bestimmt.

Experimentell konnten die beiden Arbeitsgruppen die Simulationsergebnisse erfolgreich bestätigen, indem sie die Abreißkräfte vom RGD gemessen und Zellen direkt auf der Legierung kultiviert haben. Hierbei war es möglich, die Adhäsionspunkte der Zelle mit dem Substrat zu beobachten, um die Adhäsionskraft zu quantifizieren.

Durch die Kombination von Simulation und Experiment war es erstmalig möglich zu zeigen, dass die Bindung von RGD an das Substrat eine Größenordnung stärker ist als die Haftung der Zelle an das RGD. Diese Ergebnisse bieten neue Möglichkeiten, magnetische Formgedächtnismaterialien durch RGD-Beschichtungen zu funktionalisieren und in der Zukunft deren Einsatz in der regenerativen Medizin zu ermöglichen.

Weitere Informationen:
Dr. Mareike Zink
Telefon: +49 341 97-32573
E-Mail: zink@physik.uni-leipzig.de
Prof. Dr. Stefan Mayr
Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM) Leipzig
Telefon: +49 341 235-3368
E-Mail: stefan.mayr@iom-leipzig.de

Ronny Arnold | Universität Leipzig
Weitere Informationen:
http://www.iom-leipzig.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Bessere Anwendungsmöglichkeiten für Laserlicht
28.03.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Biegsame Touchscreens: Neues Herstellungsverfahren für transparente Elektronik verbessert
28.03.2017 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten