Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wasserdicht dank Bakterienfilm: Neuer Mörtel lässt Flüssigkeit abperlen

25.07.2016

Feuchtigkeit kann Mörtel auf Dauer zerstören – etwa wenn sich durch Frost Risse bilden. Ein Team von Wissenschaftlerinnen und Wissenschaftlern der Technischen Universität München (TUM) hat einen ungewöhnlichen Weg gefunden, um Mörtel vor Feuchtigkeit zu schützen: Schon beim Anrühren der Masse fügen sie einen Biofilm hinzu, eine weiche, feuchte Substanz, die von Bakterien gebildet wird.

Mit Ziegeln, Mörtel und Beton hat Prof. Oliver Lieleg für gewöhnlich wenig zu tun. Als Professor für Biomechanik am Zentralinstitut für Medizintechnik (IMETUM) und der Fakultät Maschinenwesen beschäftigt er sich hauptsächlich mit Hydrogelen aus Biopolymeren, etwas flapsig könnte man sagen: mit Schleim, der von Lebewesen gebildet wird.


Die Oberflächenstruktur des mit Biofilm angemischten Mörtels (links) erzeugt einen Lotuseffekt: Wassertropfen haben deutlich weniger Kontakt zur Oberfläche als auf unbehandeltem Mörtel (rechts).

Stefan Grumbein / TUM

Dazu zählen zum Beispiel bakterielle Biofilme wie Zahnbelag oder die schleimige, schwarze Schicht in Abflussrohren. „Biofilme gelten im Allgemeinen als schädlich und störend, das ist etwas, was man eher loswerden will“, sagt Oliver Lieleg. „Für mich war es deshalb reizvoll, sie für eine sinnvolle Anwendung nutzbar zu machen.“

Inspiration im Gespräch

Im Gespräch mit einem Kollegen an der TUM kam Lieleg die Idee, Biofilme zu nutzen, um die Eigenschaften von Baumaterial zu verändern. Prof. Christian Große ist Inhaber des Lehrstuhls für Zerstörungsfreie Werkstoffprüfung und forscht unter Anderem zu selbstheilendem Beton, der Risse selbständig schließt. Einer Variante dieses Betons sind Bakterien beigemischt, die durch eintretende Feuchtigkeit aktiviert werden und die Risse durch kalkhaltige Stoffwechselprodukte wieder schließen.

Für sein eigenes Projekt nahm sich Lieleg anstelle von Beton Mörtel vor. Statt Risse im Nachhinein zu flicken, will er jedoch verhindern, dass Feuchtigkeit überhaupt erst eindringt und für Probleme sorgt indem sich etwa Schimmel bildet oder gefrierendes Wasser kleine Spalten weiter aufsprengt. Dafür macht er sich zunutze, dass einige Filme, die von Bakterien gebildet werden, stark wasserabweisend sind. Im Fachmagazin „Advanced Materials“ schildern Lieleg und seine Kolleginnen und Kollegen, wie man einen sogenannten Hybridmörtel herstellen kann, der besonders resistent gegen Feuchtigkeit ist.

Bodenbakterium als Filmlieferant

Wichtigste Zutat des neuen Materials ist der Biofilm eines Bakteriums namens Bacillus subtilis. „Bacillus subtilis lebt normalerweise in Böden und ist sehr weit verbreitet“, erläutert Oliver Lieleg. „Wir haben für unsere Experimente einen einfachen Laborstamm genutzt, der sich gut vermehren lässt, viel Biomasse bildet und völlig ungefährlich ist.“ Im Labor züchtete das Team um Lieleg den Bakterienfilm auf Standard-Nährböden. Den feuchten Biofilm mischten sie dann unter das Mörtelpulver.

Auf dem fertigen Hybridmörtel blieb Wasser deutlich weniger haften, als auf unbehandeltem. Um diese Eigenschaft einer Oberfläche zu messen, bestimmen Wissenschaftler den Kontaktwinkel, den ein Wassertropfen zur Oberfläche hat. Je steiler der Winkel, desto kugelförmiger ist ein Tropfen und desto weniger sickert er in das jeweilige Material ein. Während dieser Winkel bei Tropfen auf unbehandeltem Mörtel 30 Grad oder weniger beträgt, ist er bei Tropfen auf dem Hybridmörtel gut dreimal so steil. Einen ähnlichen Kontaktwinkel haben Wassertropfen auf Polytetrafluorethylen, besser bekannt unter dem Markennamen Teflon.

Nanostrukturen im Mörtel

Der Grund für die Eigenschaften des Hybridmörtels ist nur mit dem Elektronen-Mikroskop sichtbar: Überall an der Oberfläche befinden sich winzige kristalline Stacheln. Dadurch kommt es zum sogenannten Lotuseffekt, der beispielsweise auch auf den Blättern der namensgebenden Pflanze auftritt. Die kleinen gleichmäßigen Strukturen auf der Oberfläche sorgen dafür, dass nur ein kleiner Teil der Oberfläche eines Wassertropfens die eigentliche Oberfläche des Blattes berührt.

Dadurch wird die Oberflächenspannung des Tropfens stärker als die Kräfte, die ihn am Blatt haften lassen, er wird kugelförmig und perlt ab. Ein Schnitt durch den Hybridmörtel zeigt, dass die kristallinen Stacheln auch innerhalb des Mörtels gleichmäßig verteilt sind. Dadurch werden Kapillarkräfte verringert, die normalerweise dafür sorgen, dass Wasser in dem Mörtel emporsteigt, wenn ein Teil in Flüssigkeit steht.

Ähnliche Stacheln kommen zwar auch auf unbehandeltem Mörtel vor, sie sind dort aber länger und nur an einzelnen Stellen zu finden. Ein Lotuseffekt kann nicht entstehen. Erst der beigemischte Biofilm, nehmen die Wissenschaftler an, stimuliert überall im Volumen des Hybridmaterials ein Kristallwachstum, das zudem besonders gleichmäßig ist.

Um herauszufinden, ob der Hybridmörtel widerstandsfähig genug ist, um tatsächlich im Bau verwendet zu werden, wird er derzeit am Lehrstuhl von Christian Große geprüft. „Wenn der Mörtel tatsächlich geeignet ist, sehe ich wenig Probleme für Firmen, ihn im großen Stil herzustellen“, sagt Oliver Lieleg. Sowohl der verwendete Bakterienstamm als auch die Nährböden seien etabliert und relativ kostengünstig. „In unseren Experimenten haben wir außerdem herausgefunden, dass man auch gefriergetrockneten Biofilm nutzen kann. In Pulverform lässt sich das biologische Material sehr viel leichter lagern, transportieren und dosieren.“ In Zukunft wollen die Wissenschaftlerinnen und Wissenschaftler prüfen, ob sich auch Beton mithilfe des Biofilms gegen Wasser schützen lässt.

Kontakt:

Prof. Dr. Oliver Lieleg
Professur für Biomechanik
Technische Universität München
Fakultät für Maschinenwesen und Zentralinstitut für Medizintechnik
Telefon: +49 (0)89-289-10952
E-Mail: oliver.lieleg@tum.de

Publikation:

S. Grumbein, D. Minev, M. Tallawi, K. Boettcher, F. Prade, F. Pfeiffer, C.U. Große and O. Lieleg, Hydrophobic Properties of Biofilm-Enriched Hybrid Mortar, Advanced Materials, DOI: 10.1002/adma.201602123 (2016)

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung
14.12.2017 | Universität Bayreuth

nachricht Warum Teige an Oberflächen kleben
14.12.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten