Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vom Zellstoff zum Formteil – Fraunhofer entwickelt neue Technologie für faserverstärkte Kunststoffe

10.02.2017

Zellstoff ist ein attraktives Material für den Einsatz in faserverstärkten Kunststoffen, etwa für Leichtbau-Anwendung oder als Material für Transportbehälter und Paletten. Bisher ist es allerdings nicht möglich, gängige Zellstoff-Lieferformen auf effiziente Weise dafür zu nutzen. Das will das Fraunhofer-Pilotanlagenzentrum für Polymersynthese und -verarbeitung PAZ in einem neuen Projekt ändern: Gemeinsam mit Partnern wird eine Technologieplattform zur Herstellung hochwertiger Zellstoff-Compounds und deren Weiterverarbeitung zu Formteilen entwickelt.

Faserverstärkte Kunststoffe werden beispielsweise für Instrumententafeln oder Seitenverkleidungen im Auto, in Gehäusen von Elektrogeräten oder für Gartenmöbel genutzt. Die thermoplastischen Kunststoffe wie Polypropylen (PP), Polyethylen (PE) oder Polyamid (PA) werden dabei mit Fasern verstärkt, um ganz spezifische Materialeigenschaften zu erzielen. Der Faseranteil am Werkstoff kann bis zu 40 Prozent betragen.


Ein erstes Muster des am Fraunhofer PAZ entwickelten Filterstopfwerks.

Fraunhofer PAZ

Zellstofffasern wären dafür gut geeignet: Sie sind ein nachwachsender Rohstoff und günstiger als andere Materialien wie Glas. Zudem haben Untersuchungen am Fraunhofer PAZ gezeigt, dass sie im Vergleich zu anderen Naturfasern sehr gute mechanische Kennwerte für die Kunststoff-Verstärkung möglich machen: Setzt man sehr gut vereinzelte Zellstofffasern mit großer Faserlänge in der Spritzgießcompoundierung ein, sind die entstehenden Materialien genauso belastbar wie Kurzglasfaser-Compounds – bei erheblichen Material- und Kostenvorteilen.

Um Zellstofffasern auf diese Weise nutzen zu können, stellen sich allerdings große Herausforderungen an den Prozessablauf: Aus gängigen Lieferformaten wie Pappe müssen einzelne Fasern in ausreichender Länge gewonnen werden, die zudem dosierbar und rieselfähig sind, um beim Einbringen in die Kunststoffschmelze den Fasergehalt und die Faserverteilung genau bestimmen zu können. Ein solches Verfahren ist bisher nicht verfügbar.

Das Fraunhofer PAZ möchte genau diese Technologie entwickeln und arbeitet dazu in einem neuen Projekt mit der Kurt Seume Spezialmaschinenbau GmbH, Ematik GmbH, Exipnos GmbH und Dornburger Kunststoff-Technik GmbH zusammen. Ziel des Projekts, das innerhalb des Programms »Wachstumskern Potenzial« für zwei Jahre vom Bundesministerium für Bildung und Forschnung (BMBF) gefördert wird, ist die Entwicklung einer Technologieplattform zur effizienten Herstellung hochwertiger Zellstoff-Compounds ausgehend von kommerziell verfügbaren Zellstoff-Lieferformen sowie deren Verarbeitung zu Formteilen mittels konventionellem Spritzguss sowie Spritzgießcompoundierung.

»Durch das Know-how der beteiligten Partner können wir Zellstoff- und Kunststoff-Technologie in einer einzigartigen, durchgehenden Lösung miteinander verbinden. So machen wir Faserzellstoff für die Kunststoff-Verstärkung industriell nutzbar. Denn die Inline-Verarbeitung, ausgehend von Pappe und ohne weitere Zwischenprodukte, die die Eigenschaften verschlechtern und den Preis erhöhen würden, ist die effizienteste Variante der Verarbeitung«, sagt Dr. Michael Busch, Leiter des Projekts am Fraunhofer PAZ.

Schlüssel dabei ist ein am Fraunhofer PAZ entwickeltes und zum Patent angemeldetes Filterstopfwerk: Die Pappe als Ausgangsmaterial wird zunächst gemahlen, sodass einzelne Zellstofffasern in ausreichender Länge entstehen. Diese werden in einem Faser-Luft-Strom abtransportiert. Das Filterstopfwerk trennt dann die Fasern von der Luft und befördert sie in den Compoundier-Extruder, wo die Weiterverarbeitung stattfindet.

Projektleiter Busch sieht vielfältige Anwendungsmöglichkeiten für hochwertige Faserzellstoff-Compounds und Formteile: »Einerseits wird eine signifikante Vereinfachung aufwändiger konstruktiver Lösungen möglich. Andererseits könnte man glasfaserverstärkte Kunststoffe durch zellfaserverstärkte, die günstiger und ökologischer sind, teilweise ersetzen«, sagt er. Auch die Fertigung von Masterbatches, bei denen der Faseranteil mehr als 50 Prozent beträgt, strebt das Konsortium an.

Über das Fraunhofer PAZ
Seit 2005 werden im Fraunhofer-Pilotanlagenzentrum für Polymersynthese und - verarbeitung PAZ in Schkopau neue Polymer-Produkte und innovative Technologien entlang der gesamten Wertschöpfungskette entwickelt – vom Monomer über die Polymersynthese und Kunststoffverarbeitung im Pilotmaßstab bis hin zum geprüften Bauteil nach Maß. In dieser Kombination und Größenordnung ist das Fraunhofer PAZ einmalig in Europa. Im Auftrag von Kunden etwa aus der Kunststoff- oder Automobilindustrie werden auf einer Technikums- und Laborfläche von derzeit rund 1700 Quadratmetern unterschiedlichste Polymersynthese- und Verarbeitungsverfahren maßgeschneidert bis in den industrienahen Maßstab umgesetzt.

Das Fraunhofer PAZ ist eine gemeinsame Initiative der Fraunhofer-Institute für Angewandte Polymerforschung IAP in Potsdam-Golm und für Mikrostruktur von Werkstoffen und Systemen IMWS in Halle. Unter der Leitung von Prof. Michael Bartke (IAP) bündeln beide Einrichtungen ihre Kompetenzen in der Polymersynthese (IAP) und Polymerverarbeitung (IMWS) in einzigartiger Weise. Diese Zusammenarbeit, die technischen Möglichkeiten im Pilotmaßstab sowie die hohe Flexibilität der Anlagen sind Alleinstellungsmerkmale am FuE-Markt.

Das Pilotanlagenzentrum ist als Mieter in das mitz II integriert. Der ebenfalls 2005 eröffnete Erweiterungsbau des Merseburger Innovations- und Technologiezentrums mitz GmbH, wurde zu 90 Prozent durch das Land Sachsen-Anhalt / EU finanziert. Die Mittel für die apparative Erstausstattung und die Anlagen des PAZ in Höhe von rund 19 Millionen Euro stammen zu 84 Prozent aus dem Europäischen Fonds für regionale Entwicklung EFRE.


Weitere Informationen:

http://www.imws.fraunhofer.de/de/kontakt/presse/pressemitteilungen/Zellstoff-Com...
http://www.polymer-pilotanlagen.de


Clemens Homann | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wussten Sie, dass Verpackungen durch Flash Systeme intelligent werden?
23.05.2017 | Heraeus Noblelight GmbH

nachricht Bessere Kathodenmaterialien für Lithium-Schwefel-Akkus
17.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten

CRTD erhält 1.56 Millionen Euro BMBF-Förderung für Forschung zu degenerativen Netzhauterkrankungen

24.05.2017 | Förderungen Preise

Neues Helmholtz-Institut in Würzburg erforscht Infektionen auf genetischer Ebene

24.05.2017 | Förderungen Preise