Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vom Tabak zum Cyberholz

31.03.2015

Wissenschaftler der ETH Zürich bauten ein Thermometer, das mindestens hundertmal empfindlicher ist als bisherige Temperatursensoren. Es besteht aus einem biologisch-synthetischen Hybridmaterial mit Tabakzellen und Nanoröhrchen.

Seit jeher lässt sich die Menschheit von der Natur inspirieren, und sie ahmt diese nach, um neue Technologien zu entwickeln. Die Beispiele reichen vom Maschinenbau über die Pharmazie bis hin zu neuartigen Materialien. So sind Flugzeuge Vögeln nachempfunden, und viele Medikamente haben ihren Ursprung in pflanzlichen Wirkstoffen.

Forschende am Departement Maschinenbau und Verfahrenstechnik gingen nun einen Schritt weiter: Um einen extrem empfindlichen Temperatursensor zu entwickeln, bedienten sie sich temperaturempfindlichen pflanzlichen Zellen. Allerdings ahmten sie nicht die Eigenschaften dieser Zellen nach, sondern entwickelten ein Hybridmaterial, das neben synthetischen Komponenten auch die pflanzlichen Zellen selbst enthält. «Wir lassen die Natur für uns arbeiten», fasst Chiara Daraio, Professorin für Mechanik und Materialien, den Ansatz zusammen.

So gelang es den Wissenschaftlern, den mit Abstand empfindlichsten Temperatursensor zu entwickeln, das heisst einen elektronischen Baustein, der seine Leitfähigkeit in Abhängigkeit mit der Temperatur ändert. «Bei keinem anderen Sensor führen so geringe Temperaturschwankungen zu so grossen Änderungen der Leitfähigkeit, unser Sensor reagiert mindestens hundertmal stärker als die besten existierenden Sensoren», sagt Raffaele Di Giacomo, Postdoc in der Gruppe von Daraio.

Wasser durch Nanoröhrchen ersetzt

Dass Pflanzen die ausserordentliche Fähigkeit haben, bereits sehr geringe Temperaturunterschiede zu erkennen und darauf mit Änderungen in der Leitfähigkeit ihrer Zellen zu reagieren, ist schon seit Jahrzehnten bekannt. Pflanzen sind dabei besser als jeder menschgemachte Sensor.

Di Giacomo experimentierte mit Tabakzellen in Zellkultur. «Wir stellten uns die Frage, wie wir diese Zellen in ein lebloses, trockenes Material überführen können, und zwar auf eine Weise, dass ihre temperatursensitiven Eigenschaften erhalten bleiben», sagt er.

Das Ziel erreichte der Wissenschaftler, indem er die Zellen in einem Medium wachsen liess, dass sehr kleine Röhrchen aus Kohlenstoff enthielt. Diese elektrisch leitenden «Carbon Nanotubes» bildeten ein Netzwerk zwischen den Tabakzellen und waren ausserdem in der Lage, deren Zellwand zu durchdringen. Als Di Giacomo die so kultivierten Zellen trocknete, erhielt er ein holzähnliches festes Material, das er Cyberholz nennt. Im Gegensatz zu Holz ist es wegen den Nanotubes elektrisch leitend, und interessanterweise ist diese Leitfähigkeit wie bei den lebenden Tabakzellen in Zellkultur temperaturabhängig und extrem empfindlich.

«Berührungsloser Touchscreen» und Wärmebildkameras

Wie Tests zeigten, kann dieser Cyberholz-Sensor warme Körper sogar auf Distanz erkennen, zum Beispiel eine Hand, die sich dem Sensor auf wenige Dutzend Zentimeter nähert. Die Leitfähigkeit des Sensors hängt dabei direkt von der Distanz der Hand zum Sensor ab.

Anwendungsmöglichkeiten für das Cyberholz gibt es nach Ansicht der Wissenschaftler viele. Sie denken etwa daran, einen «berührungsloser Touchscreen» zu entwickeln, der sich über Gesten steuern lässt. Die Gesten würden über mehrere Temperatursensoren erfasst werden. Ebenfalls möglich wären Wärmebildkameras oder Nachtsichtgeräte.

Geliermolekül Pektin in einer Schlüsselrolle

Die Wissenschaftler der ETH Zürich und ein Kollege der Universität Salerno, Italien, untersuchten nicht nur im Detail die Eigenschaften ihres neuen Materials, sondern auch dessen Wirkmechanismus. So fanden sie heraus, dass sowohl in den Tabakzellen in Kultur als auch im getrockneten Cyberholz sogenannten Pektinen sowie geladenen Atomen (Ionen) Schlüsselrollen zukommen. Pektine sind Zuckermoleküle, die in der Zellwand von Pflanzen vorkommen und sich zu einem Gel vernetzen können, wobei diese Vernetzung temperaturabhängig ist. In diesem Gel sind auch Kalzium- und Magnesium-Ionen vorhanden. «Mit zunehmenden Temperaturen nimmt die Vernetzung der Pektine ab, das Gel wird weicher, und die Ionen können sich freier bewegen», erklärt Di Giacomo. Als Folge davon leitet das Material bei höheren Temperaturen Strom besser.

Die Wissenschaftler haben den Sensor nun zum Patent angemeldet. In weiterer Arbeit entwickeln sie ihn nun weiter, so dass er nicht mit Pflanzenzellen, sondern im Wesentlichen nur mit Pektin und Ionen funktioniert. Auf diese Weise möchten sie einen beweglichen, lichtdurchlässigen und biokompatiblen Sensor mit derselben extrem hohen Temperatursensitivität bauen. Ein solcher könnte in beliebige Formen gebracht und kostengünstig hergestellt werden, worin die Forschenden ganz neue Anwendungsmöglichkeiten sehen, unter anderem in der Biomedizin und in günstigen Wärmebildkameras.

Literaturhinweis

Di Giacomo R, Daraio C, Maresca B: Plant nanobionic materials with a giant temperature response mediated by pectin-Ca2+. PNAS 2015, doi: 10.1073/pnas.1421020112

Fabio Bergamin | ETH Zürich
Weitere Informationen:
http://www.ethz.ch

Weitere Berichte zu: Distanz ETH Gel Ionen Leitfähigkeit Maschinenbau Nanotubes Pektin Sensor Tabak Temperaturen Temperatursensor Touchscreen Zellen Zellwand

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Studie InLight: Einblicke in chemische Prozesse mit Licht
22.11.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Eigenschaften von Magnetmaterialien gezielt ändern
16.11.2016 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden «Krebssignatur» in Proteinen

05.12.2016 | Biowissenschaften Chemie

Wichtiger Prozess für Wolkenbildung aus Gasen entschlüsselt

05.12.2016 | Geowissenschaften

Frühwarnsignale für Seen halten nicht, was sie versprechen

05.12.2016 | Ökologie Umwelt- Naturschutz