Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vollständig mischbare Nanokomposite – ein Durchbruch auf dem Weg zu neuartigen Funktionsmaterialien

29.06.2011
Polymere Nanokomposite gelten in Wissenschaft und Industrie immer stärker als Materialien, die den Fortschritt im 21. Jahrhundert entscheidend mitbestimmen werden. Sie bestehen aus einer Kunststoffmatrix und aus Nanopartikeln, die als Füllstoffe in die Matrix eingesetzt werden.

Ein Forschungsteam um Prof. Dr. Stephan Förster, Universität Bayreuth, hat jetzt ein Verfahren entwickelt, das den Weg zur Herstellung neuartiger – nämlich vollständig mischbarer – Nanokomposite öffnet. In diesen Materialien steckt ein äußerst vielseitiges Potenzial für technologische Innovationen. In der Zeitschrift „Angewandte Chemie“ stellen die Wissenschaftler ihre bahnbrechende Entwicklung vor.


Mit dem Rasterelektronenmikroskop (SEM) hergestellte Aufnahmen von eisenhaltigen
Nanopartikeln in einer Kunststoffmatrix (hier: Polystyrol). Die Nanopartikel werden
durch eine Beschichtung aus Polymeren an der Verklumpung gehindert. Von der
Länge der für die Beschichtung verwendeten Polymerketten hängt es ab, wie weit
die einzelnen Nanopartikel im Kunststoff voneinander entfernt sind. Die Abstände
lassen sich deshalb mit hoher Genauigkeit regulieren. "PS 3.3k" steht für Polystyrol mit einem Molekulargewicht von 3300 g/mol,
"PS 7.6k" für Polystyrol mit einem Molekulargewicht von 7600 g/mol. Aufnahmen: Prof. Dr. Stephan Förster, Universität Bayreuth

Nanopartikel sind winzige Teilchen mit einem Durchmesser von weniger als 100 Nanometern. Sie können als Füllstoffe in Kunststoffe eingebracht werden. Allerdings haben sie die Tendenz, innerhalb der Kunststoffmatrix zu verklumpen. Sie verteilen sich daher nicht als vereinzelte Teilchen in allen Abschnitten der Matrix, sondern sie lagern sich an wenigen Stellen der Matrix zusammen. Die Ursache hierfür liegt darin, dass die Nanopartikel im Zustand der Verklumpung erheblich weniger Grenzflächenenergie aufwenden müssen, als wenn sie einzeln im Kunststoff vorliegen würden.

Doch für industrielle Anwendungen sind polymere Nanokomposite viel attraktiver, wenn sich die einzelnen Nanopartikel separat im Kunststoff verteilen. Denn in diesem Fall zeichnen sich die neuen Materialien durch eine erheblich bessere Transparenz aus, während sie aufgrund der verklumpten Nanopartikel trübe und undurchsichtig werden. Zudem ist die elektrische und thermische Leitfähigkeit der Materialien umso stärker ausgeprägt, je gleichmäßiger sich die Nanopartikel im Kunststoff verteilen. Nicht zuletzt sind die Materialien dann auch hitzebeständiger und weniger leicht entflammbar.

Wie aber lässt sich die Verklumpung der in die Kunststoffmatrix eingeführten Nanopartikel verhindern? Zur Lösung dieses Problems hat Professor Dr. Stephan Förster, in Kooperation mit Wissenschaftlern der Universität Hamburg, eine neue Forschungsidee entwickelt und im Labormaßstab bereits erfolgreich umgesetzt. Ausgangspunkt des Verfahrens sind Polymerketten. Am Ende jeder Kette wird ein Haftungsmolekül befestigt. Wie mit einem Enterhaken hängt sich die Polymerkette mit diesem Molekül an ein Nanopartikel an; und zwar so, dass sie mit ihrem einen Ende nahezu senkrecht auf der Oberfläche des Partikels steht, während ihr anderes Ende nach außen absteht. Auf diese Weise erhält jedes Nanopartikel eine aus Polymerketten bestehende Rundum-Beschichtung, die aussieht wie eine kugelförmige Bürste. Die wie Borsten nach außen abstehenden Polymerketten verhindern, dass sich die Nanopartikel allzu nahekommen, wenn sie in die Kunststoffmatrix eingebracht werden. Sie bleiben als vereinzelte Partikel erhalten, während die Polymerketten in den Kunststoff eingearbeitet werden.

Damit ist der Weg frei, um anspruchsvolle Funktionsmaterialien herzustellen, bei denen separate Nanopartikel in alle Abschnitte der Kunststoffmatrix eingelagert sind. Die Eigenschaften und Verhaltensweisen eines derartigen Nanokomposits hängen wesentlich davon ab, wie weit benachbarte Nanopartikel voneinander entfernt sind. Diese Abstände lassen sich während der Herstellung mit großer Genauigkeit regulieren. Auch die chemische Zusammensetzung der Nanopartikel kann variieren und hat einen erheblichen Einfluss auf das entstehende Material. Daher ermöglicht das neue Verfahren ein zielgenaues Design polymerer Nanokomposite, die infolge ihrer inneren Zusammensetzung spezifische Eigenschaften und Verhaltensweisen aufweisen.

Von besonderem Interesse sind Halbleiter-Nanopartikel, wie z.B. cadmiumhaltige Verbindungen. Wenn es gelingt, sie im Industriemaßstab flächendeckend in einer Kunststoffmatrix zu verteilen, öffnen sich interessante Perspektiven für die Energietechnik. Denn derartige Nanokomposite eignen sich voraussichtlich für den Bau hochleistungsfähiger Solarzellen, die in der Lage sind, einen hohen Anteil der gespeicherten Lichtenergie in elektrischen Strom umzuwandeln. Attraktiv scheinen auch Forschungen mit eisenhaltigen Nanopartikeln, die in großer Dichte in eine Kunststoffmatrix eingebracht werden. Dadurch lassen sich möglicherweise auf engstem Raum sehr hohe Kapazitäten für die magnetische Speicherung von Informationen erzielen.

„In den nächsten Jahren wollen wir ein breites Spektrum von Nanokompositen im Labormaßstab herstellen und hinsichtlich ihrer Eigenschaftsprofile und Anwendungspotenziale untersuchen“, erklärt Prof. Dr. Stephan Förster. „Ich halte es für wahrscheinlich, dass wir mit dem neuen Beschichtungsverfahren innovative Funktionsmaterialien entwickeln können, die uns mit ihrer außergewöhnlichen Leistungsfähigkeit noch überraschen werden.“

Veröffentlichung:

Steffen Fischer, Andrea Salcher, Andreas Kornowski, Horst Weller, and Stephan Förster, Completely Miscible Nanocomposites,
in: Angewandte Chemie International Edition, 2011, Volume 50,
Article first published online: June 3, 2011.
DOI-Bookmark: 10.1002/anie.201006746
Wegen ihrer besonderen Bedeutung für ein sich rasch entwickelndes Forschungsfeld wurde die Publikation von der Redaktion der Zeitschrift als „Hot Paper“ eingestuft.

Ansprechpartner für weitere Informationen:

Prof. Dr. Stephan Förster
Lehrstuhl Physikalische Chemie I
Universität Bayreuth
D-95440 Bayreuth
Tel: +49 (0)921 / 55–2760
E-Mail (Sekr.): elisabeth.duengfelder@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

nachricht Stahl ist nicht gleich Stahl: Informatiker und Materialforscher optimieren Werkstoffklassifizierung
19.02.2018 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Highlight der Halbleiter-Forschung

20.02.2018 | Physik Astronomie

Wie verbessert man die Nahtqualität lasergeschweißter Textilien?

20.02.2018 | Materialwissenschaften

Der Bluthochdruckschalter in der Nebenniere

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics