Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vielseitiges Werkzeug: Blockcopolymere verbessern Hafteigenschaften von Kunststoffen

15.04.2015

Auf die Grenzflächen und ihr Design kommt es an, wenn Polymere in neuen Anwendungsfeldern zum Einsatz kommen oder verschiedene Materialien auf innovative Art kombiniert werden. Als ein sehr vielseitiges Werkzeug hierfür haben sich Blockcopolymere erwiesen, die der Forschungsbereich Kunststoffe des Fraunhofer-Instituts für Betriebsfestigkeit und Systemzuverlässigkeit LBF entwickelt. Bei entsprechendem Design lagern sich die Blockcopolymere in der Grenzfläche an und verbessern damit das Eigenschaftsprofil der mehrphasigen Polymersysteme.

Die Blöcke der Copolymere passt das Institut für die Materialien, die kombiniert werden müssen, an und entwickelt für eine Vielzahl unterschiedlicher Polymere maßgeschneiderte Lösungen. Darunter sind beispielsweise auch Polyolefine oder Polykondensate, bei denen die Synthese von Blockcopolymeren sehr anspruchsvoll ist. Auch für die Anbindung von Polymeren auf Oberflächen verschiedener Materialklassen, wie zum Beispiel anorganische und organische Füllstoffe und Fasern sowie Glas, Keramik- oder Metalloberflächen, lassen sich geeignete funktionelle Ankergruppen in den Kompatibilisierer integrieren. Mit Blockcopolymeren als Haft- und Phasenvermittler kann das Fraunhofer LBF die mechanischen, physikalischen oder optischen Eigenschaften verschiedener Materialien verbessern. Aktuell optimiert das Institut beispielsweise thermoplastische Elastomere, die Schlagzähmodifizierung von spröden Polymeren, aber auch die Haftung zwischen Polymeren und Materialien anderer Klassen.


Funktionsweise der Haftvermittler

Fraunhofer LBF


Chemische Synthese der Blockcopolymeren im Labor.

Fraunhofer LBF, Hessen schafft Wissen

Haftvermittler für Polymer-Metallverbunde entwickelt

Rund um die Mobilität geht der Trend zum Leichtbau: Immer mehr Bauteile aus Metall werden durch solche aus Kunststoff ersetzt. Um das Beste aus den beiden Werkstoffen herauszuholen, werden Metalle und Kunststoffe in Form von Werkstoffverbunden oder Hybridbauteilen kombiniert. Problematisch dabei ist jedoch oft die unzureichende Haftung zwischen Kunststoffen und Metallen. Der Forschungsbereich Kunststoffe des Fraunhofer-Instituts für Betriebsfestigkeit und Systemzuverlässigkeit LBF erkannte ein erhebliches Potential, die Hafteigenschaften zwischen Kunststoffen und Metallen zu verbessern – und damit auch die Leistungsfähigkeit der Verbunde und Hybride. Das Institut entwickelte und testete neue, selbstentwickelte, maßgeschneiderte Haftvermittler, die die Festigkeit der zahlreichen Arten von Polymer-Metall-Grenzflächen verbessern. Dazu zählen beispielsweise die Kombinationen von Stahl, Aluminium, Titan oder Kupfer mit schlagzähmodifizierten Thermoplasten, Hochleistungspolymeren oder thermoplastischen Elastomeren.

Hybrid- oder Verbundbauteile werden häufig durch An- oder Hinterspritzen einer Kunststoffschmelze an ein Metallteil hergestellt. Dauerhaft beständige Verbindungen werden dabei meist konstruktiv durch Formschluss erzielt. Alternativ werden auch Haftvermittler eingesetzt, die allerdings üblicherweise nicht hinreichend individuell auf die eingesetzten Komponenten abgestimmt sind.

Bei den im Fraunhofer LBF entwickelten Haftvermittlern handelt es sich um partiell funktionalisierte Polymere, die mit der Metalloberfläche eine kovalente Bindung eingehen können. Die nicht-funktionalisierten Teile der Haftvermittler sind mischbar oder identisch mit dem Polymer, das mit einem Metallteil verbunden werden soll. Diese Haftvermittler werden zunächst aus einer Lösung, zum Beispiel durch Tauchen, Streichen oder Sprühen, auf eine Metalloberfläche aufgetragen. Wird nach dem Abdampfen des Lösungsmittels die so vorbehandelte Metalloberfläche mit einer Polymerschmelze in Kontakt gebracht, bilden die Ankergruppen der Haftvermittler eine chemische Verbindung zur Metalloberfläche aus. Die nicht funktionalisierten Teile des Haftvermittlers verschlaufen mit der Polymerschmelze.

Festigkeit der Grenzflächen erhöht

In verschiedenen mechanischen Tests, beispielsweise mit Zug-, Zugscher- oder Schälversuchen, untersuchten die Wissenschaftler die Festigkeiten unterschiedlicher Prüfkörper aus Metall und Kunststoff. Ergebnis: In allen Fällen fanden sie eine erhöhte Festigkeit der Grenzfläche zwischen Kunststoff und Metall, wenn die metallische Oberfläche mit den entwickelten Haftvermittlern vorbehandelt wurde. Mit bildgebenden und spektroskopischen Untersuchungen der Bruchflächen konnten die LBF-Wissenschaftler zeigen, dass ein Materialversagen nicht in der Grenzfläche stattfindet, da auf der Metalloberfläche stets eine Polymerschicht verbleibt.

Über den Forschungsbereich Kunststoffe im Fraunhofer LBF

Mit dem Forschungsbereich Kunststoffe, hervorgegangen aus dem Deutschen Kunststoff-Institut DKI, begleitet und unterstützt das Fraunhofer LBF seine Kunden entlang der gesamten Wertschöpfungskette von der Polymersynthese über die Formulierung des Werkstoffs, seine Verarbeitung und das Produktdesign bis hin zur Qualifizierung und Nachweisführung von komplexen sicherheitsrelevanten Leichtbausystemen. Der Forschungsbereich ist spezialisiert auf das Management kompletter Entwicklungsprozesse und berät seine Kunden in allen Entwicklungsstufen. Hochleistungsthermoplaste und Verbunde, Duromere, Duromer-Composites und Duromer-Verbunde sowie Thermoplastische Elastomere spielen eine zentrale Rolle. Der Bereich Kunststoffe ist ein ausgewiesenes Kompetenzzentrum für Additivierungs-, Formulierungs- und Hybrid-Fragestellungen. Umfassendes Know-how besteht in der Analyse und Charakterisierung von Kunststoffen und deren Veränderung während der Verarbeitung sowie in der Methodenentwicklung zeitaufgelöster Vorgänge bei Kunststoffen.

http://www.lbf.fraunhofer.de

Anke Zeidler-Finsel | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bakterielle Nano-Harpune funktioniert wie Power-Bohrer

26.09.2017 | Biowissenschaften Chemie

eTRANSAFE – ein Forschungsprojekt für mehr Sicherheit bei der Arzneimittelentwicklung

26.09.2017 | Biowissenschaften Chemie

Die schnellste lichtgetriebene Stromquelle der Welt

26.09.2017 | Physik Astronomie