Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vielseitiges Werkzeug: Blockcopolymere verbessern Hafteigenschaften von Kunststoffen

15.04.2015

Auf die Grenzflächen und ihr Design kommt es an, wenn Polymere in neuen Anwendungsfeldern zum Einsatz kommen oder verschiedene Materialien auf innovative Art kombiniert werden. Als ein sehr vielseitiges Werkzeug hierfür haben sich Blockcopolymere erwiesen, die der Forschungsbereich Kunststoffe des Fraunhofer-Instituts für Betriebsfestigkeit und Systemzuverlässigkeit LBF entwickelt. Bei entsprechendem Design lagern sich die Blockcopolymere in der Grenzfläche an und verbessern damit das Eigenschaftsprofil der mehrphasigen Polymersysteme.

Die Blöcke der Copolymere passt das Institut für die Materialien, die kombiniert werden müssen, an und entwickelt für eine Vielzahl unterschiedlicher Polymere maßgeschneiderte Lösungen. Darunter sind beispielsweise auch Polyolefine oder Polykondensate, bei denen die Synthese von Blockcopolymeren sehr anspruchsvoll ist. Auch für die Anbindung von Polymeren auf Oberflächen verschiedener Materialklassen, wie zum Beispiel anorganische und organische Füllstoffe und Fasern sowie Glas, Keramik- oder Metalloberflächen, lassen sich geeignete funktionelle Ankergruppen in den Kompatibilisierer integrieren. Mit Blockcopolymeren als Haft- und Phasenvermittler kann das Fraunhofer LBF die mechanischen, physikalischen oder optischen Eigenschaften verschiedener Materialien verbessern. Aktuell optimiert das Institut beispielsweise thermoplastische Elastomere, die Schlagzähmodifizierung von spröden Polymeren, aber auch die Haftung zwischen Polymeren und Materialien anderer Klassen.


Funktionsweise der Haftvermittler

Fraunhofer LBF


Chemische Synthese der Blockcopolymeren im Labor.

Fraunhofer LBF, Hessen schafft Wissen

Haftvermittler für Polymer-Metallverbunde entwickelt

Rund um die Mobilität geht der Trend zum Leichtbau: Immer mehr Bauteile aus Metall werden durch solche aus Kunststoff ersetzt. Um das Beste aus den beiden Werkstoffen herauszuholen, werden Metalle und Kunststoffe in Form von Werkstoffverbunden oder Hybridbauteilen kombiniert. Problematisch dabei ist jedoch oft die unzureichende Haftung zwischen Kunststoffen und Metallen. Der Forschungsbereich Kunststoffe des Fraunhofer-Instituts für Betriebsfestigkeit und Systemzuverlässigkeit LBF erkannte ein erhebliches Potential, die Hafteigenschaften zwischen Kunststoffen und Metallen zu verbessern – und damit auch die Leistungsfähigkeit der Verbunde und Hybride. Das Institut entwickelte und testete neue, selbstentwickelte, maßgeschneiderte Haftvermittler, die die Festigkeit der zahlreichen Arten von Polymer-Metall-Grenzflächen verbessern. Dazu zählen beispielsweise die Kombinationen von Stahl, Aluminium, Titan oder Kupfer mit schlagzähmodifizierten Thermoplasten, Hochleistungspolymeren oder thermoplastischen Elastomeren.

Hybrid- oder Verbundbauteile werden häufig durch An- oder Hinterspritzen einer Kunststoffschmelze an ein Metallteil hergestellt. Dauerhaft beständige Verbindungen werden dabei meist konstruktiv durch Formschluss erzielt. Alternativ werden auch Haftvermittler eingesetzt, die allerdings üblicherweise nicht hinreichend individuell auf die eingesetzten Komponenten abgestimmt sind.

Bei den im Fraunhofer LBF entwickelten Haftvermittlern handelt es sich um partiell funktionalisierte Polymere, die mit der Metalloberfläche eine kovalente Bindung eingehen können. Die nicht-funktionalisierten Teile der Haftvermittler sind mischbar oder identisch mit dem Polymer, das mit einem Metallteil verbunden werden soll. Diese Haftvermittler werden zunächst aus einer Lösung, zum Beispiel durch Tauchen, Streichen oder Sprühen, auf eine Metalloberfläche aufgetragen. Wird nach dem Abdampfen des Lösungsmittels die so vorbehandelte Metalloberfläche mit einer Polymerschmelze in Kontakt gebracht, bilden die Ankergruppen der Haftvermittler eine chemische Verbindung zur Metalloberfläche aus. Die nicht funktionalisierten Teile des Haftvermittlers verschlaufen mit der Polymerschmelze.

Festigkeit der Grenzflächen erhöht

In verschiedenen mechanischen Tests, beispielsweise mit Zug-, Zugscher- oder Schälversuchen, untersuchten die Wissenschaftler die Festigkeiten unterschiedlicher Prüfkörper aus Metall und Kunststoff. Ergebnis: In allen Fällen fanden sie eine erhöhte Festigkeit der Grenzfläche zwischen Kunststoff und Metall, wenn die metallische Oberfläche mit den entwickelten Haftvermittlern vorbehandelt wurde. Mit bildgebenden und spektroskopischen Untersuchungen der Bruchflächen konnten die LBF-Wissenschaftler zeigen, dass ein Materialversagen nicht in der Grenzfläche stattfindet, da auf der Metalloberfläche stets eine Polymerschicht verbleibt.

Über den Forschungsbereich Kunststoffe im Fraunhofer LBF

Mit dem Forschungsbereich Kunststoffe, hervorgegangen aus dem Deutschen Kunststoff-Institut DKI, begleitet und unterstützt das Fraunhofer LBF seine Kunden entlang der gesamten Wertschöpfungskette von der Polymersynthese über die Formulierung des Werkstoffs, seine Verarbeitung und das Produktdesign bis hin zur Qualifizierung und Nachweisführung von komplexen sicherheitsrelevanten Leichtbausystemen. Der Forschungsbereich ist spezialisiert auf das Management kompletter Entwicklungsprozesse und berät seine Kunden in allen Entwicklungsstufen. Hochleistungsthermoplaste und Verbunde, Duromere, Duromer-Composites und Duromer-Verbunde sowie Thermoplastische Elastomere spielen eine zentrale Rolle. Der Bereich Kunststoffe ist ein ausgewiesenes Kompetenzzentrum für Additivierungs-, Formulierungs- und Hybrid-Fragestellungen. Umfassendes Know-how besteht in der Analyse und Charakterisierung von Kunststoffen und deren Veränderung während der Verarbeitung sowie in der Methodenentwicklung zeitaufgelöster Vorgänge bei Kunststoffen.

http://www.lbf.fraunhofer.de

Anke Zeidler-Finsel | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Flammschutzmittel – Verborgene Lebensretter in Kunststoffen
20.07.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Wie man Stickstoff zwingt, sich zu binden
20.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie