Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verborgenes sichtbar machen

15.12.2015

Am Freiburger Materialforschungszentrum entwickeln Wissenschaftler hochsensitive Röntgendetektoren

Wiegen, schütteln, lauschen: Nach wie vor ist das die beliebteste Methode, um den Inhalt eines Kinder-Überraschungseis zu erraten. Prof. Dr. Michael Fiederle vom Freiburger Materialforschungszentrum (FMF) der Albert-Ludwigs-Universität hat dafür einen anderen Ansatz entwickelt: Er stellt das Überraschungsei in einen tragbaren Computertomografen (CT), und das Innenleben wird auf dem Bildschirm sichtbar.


Überraschungsei im CT

Quelle: FMF

Für private Zwecke ist dies eine eher kostspielige Methode, zur Demonstration des Detektorsystems, das die Forschungsgruppe um Fiederle entwickelt hat, ein großer Spaß. Die dreidimensionale Darstellung, die mit den hochsensitiven Sensoren möglich ist, eignet sich für viele Anwendungen.

Die Detektoren ermöglichen Röntgenbilder mit hoher Auflösung und zusätzlichen spektralen Informationen, in der Fachsprache als Coloured X-Ray Imaging bezeichnet, ohne dabei Gewebe zu zerstören. Die Technik eignet sich für den Einsatz in der Medizin, beispielsweise um Strukturen von Knochen zu erkennen und somit deren Dichte zu bestimmen. So kann sie ein wichtiges Hilfsmittel für die Diagnose bei Osteoporose sein.

Das Material für die auf der so genannten Medipixelektronik basierenden Detektorsysteme produziert die Gruppe selbst. So kann sie die Materialeigenschaften der Halbleiter-Röntgendetektoren stetig weiterentwickeln und an die Anforderungen der Anwendungen anpassen.

Bei den theoretischen Forschungsergebnissen haben Fiederle und sein Kollege Dr. Alex Fauler es jedoch nicht belassen: Sie haben die Theorie in anwendbare Produkte überführt. „Der Weg vom erfolgreichen wissenschaftlichen Ergebnis zum anwendbaren Industrieprodukt ist lang und zäh", erklärt Fiederle.

Überzeugt von dem Produkt und aufgrund der Anfragen von Kooperationspartnern, haben er, Fauler und weitere Partner dennoch die Startup-Firma „X-Ray Imaging Europe GmbH (XIE)“ gegründet.

In diesem Spin-off des FMF arbeiten die beiden Forscher und ihr Team daran, dass die Geräte hohen Ansprüchen gerecht werden. Momentan werden die Detektorsysteme von XIE unter anderem bei Sicherheitsuntersuchungen in Kernkraftwerken und für Experimente an modernen Röntgenquellen, so genannten Synchrotrons wie dem ANKA in Karlsruhe, eingesetzt.

Seit der Gründung des FMF vor 25 Jahren entwickelt und verbessert Michael Fiederle neue Materialien und passt sie dem Bedarf der Nutzerinnen und Nutzer an. „Die Materialforschung am FMF ist auch mit 25 Jahren noch aktuell, innovativ und attraktiver denn je. Und sie ist immer für eine Überraschung gut."

Webseite der Forschungsgruppe:
http://www.fmf.uni-freiburg.de/service/servicegruppen/sg_matchar

Artikel auf dem Forschungsportal Surprising Science:
http://www.pr.uni-freiburg.de/go/strahlenschutz

Kontakt:
Prof. Dr. Michael Fiederle
Freiburger Materialforschungszentrum (FMF)
Albert-Ludwigs-Universität
Tel.: 0761/203-4775
E-Mail: michael.fiederle@fmf.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2015/pm.2015-12-14.178

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise