Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Van-der-Waals-Kraft neu vermessen: Nichtlinearer Anstieg mit steigender Molekülgröße nachgewiesen

26.11.2014

Die Van-der-Waals-Kräfte wirken als eine Art Quantenkleber auf alle Arten von Materie ein. Wie stark sie einzelne Moleküle an eine Oberfläche binden, haben Wissenschaftler des Forschungszentrums Jülich mit einem neuen Messverfahren nun erstmals in allen wesentlichen Details experimentell bestimmt.

Mit dem Rasterkraftmikroskop konnten sie nachweisen, dass die Kräfte nicht nur mit der Molekülgröße ansteigen, sondern sogar überproportional dazu anwachsen. Die in der Fachzeitschrift Nature Communications erschienenen Ergebnisse können dazu beitragen, grundlegende Simulationsmethoden für die Chemie, Physik, Biologie und Materialwissenschaften zu verbessern.


Dr. Christian Wagner am Rasterkraftmikroskop

Quelle: Forschungszentrum Jülich


Gecko: gute Haftung dank Van-der-Waals-Kraft

Quelle: Public Domain, http://commons.wikimedia.org/wiki/File:Uroplatus_fimbriatus_%283%29.jpg

Obwohl vor rund 150 Jahren entdeckt, ist die Van-der-Waals-Kraft nach wie vor nur sehr schwierig zu bestimmen, wenn es um die Vorhersage des Verhaltens von Festkörpern, Flüssigkeiten und Molekülen geht. Präzise Messungen waren bisher nur für einzelne Atome oder makroskopische Objekte möglich.

Von besonderer Bedeutung sind die van der Waals Kräfte jedoch gerade im mittleren Größenbereich, wo sie das Verhalten komplexer Moleküle, etwa von Biomolekülen und Proteinen, maßgeblich mitbestimmen. Sie sind auch verantwortlich für die Funktion von bestimmten Klebstoffen und stecken hinter der erstaunlichen Haftkraft von Geckos, die dank dieser Kräfte sogar eine glatte Wand hochgehen können.

„Mit unserer Methode konnten wir die Van-der-Waals-Kraft für einzelne Moleküle erstmals kontinuierlich über eine größere Distanz bestimmen“, berichtet Dr. Christian Wagner. Die gemessenen Werte stimmen mit theoretischen Vorhersagen überein, denen zufolge die Bindungsstärke mit der dritten Potenz des Abstands abnimmt – was die äußerst geringe Reichweite der Wechselwirkung erklärt.

Zudem zeigte sich: Je größer das Molekül, desto stärker ist auch die Anziehung zur Oberfläche. Tatsächlich ist dieser Effekt sogar noch etwas stärker als einfache Modelle nahelegen, und auch, als man intuitiv meinen könnte. „In der Regel wird nur die Wechselwirkung aller beteiligten Atome addiert. Doch die Van-der-Waals-Kräfte, die wir gemessen haben, gehen um etwa zehn Prozent darüber hinaus“, erklärt der Physiker vom Jülicher Peter Grünberg Institut.

Stärkere Bindung durch Bewegungsspielraum
Der Grund für die überproportionale Zunahme: Die Van-der-Waals-Kraft geht, vereinfacht gesagt, darauf zurück, dass sich die Elektronen in der Hülle von Atomen und Molekülen, ausgehend von Quantenfluktuationen, derart verschieben, dass es zu einer schwachen elektrischen Anziehung kommt. Bei größeren Molekülen sind aber nicht nur insgesamt mehr Atome beteiligt, da jedes von ihnen aus mehr Atomen besteht. Auch jedes einzelne Atom leistet einen stärkeren Beitrag.

„Da große organische Moleküle oftmals Elektronenwolken ausbilden, die sich über das gesamte Molekül erstrecken, bieten sie den Elektronen deutlich mehr Bewegungsfreiraum als ein einzelnes Atom“, erklärt der Leiter der Jülicher Nachwuchsgruppe Dr. Ruslan Temirov. „Daher lassen sie sich auch leichter verschieben, was die elektrische Anziehung überproportional erhöht.“

Kraftmessung mit Stimmgabel
Für die Messungen hefteten die Wissenschaftler komplexe organische Kohlenstoffverbindungen, die sie auf einer Metalloberfläche angelagert hatten, an die Spitze eines Rasterkraftmikroskops. Diese hatten sie ihrerseits an einem Schwingungssensor befestigt, sodass sich die Spitze ähnlich wie eine winzige Stimmgabel sehr schnell hin und her bewegt. Beim Ablösen der Moleküle von der Oberfläche verändert sich diese Schwingungsfrequenz und lässt Rückschlüsse auf die van-der-Waals-Kräfte zu, auch dann, wenn sich die Spitze bereits einige Moleküllängen (ca. 4 Nanometer) von der Oberfläche entfernt hat.

Die ermittelten Werte sind insbesondere für Simulationsrechnungen mittels Dichtefunktionaltheorie interessant, deren Entwicklung 1998 mit dem Nobelpreis gewürdigt wurde. Das Verfahren ist die heute am häufigsten verwendete Methode zur Berechnung von strukturellen, elektronischen und optischen Eigenschaften von Molekülen und Festkörpern, hat aber trotz vieler Vorteile immer noch Probleme, die Van-der-Waals-Kräfte korrekt vorherzusagen.

Originalpublikation:
Non-additivity of molecule-surface van der Waals potentials from force measurements
C. Wagner, N. Fournier, V. G. Ruiz, C. Li, K. Müllen, M. Rohlfing, A. Tkatchenko, R. Temirov, and F. S. Tautz
Nat. Commun. (published online 26 November 2014), DOI: 10.1038/ncomm6568

Weitere Informationen:
Forschung am Peter Grünberg Institut, Bereich Functional Nanostructures at Surfaces (PGI-3): http://www.fz-juelich.de/pgi/pgi-3
Nachwuchsgruppe "Complex Transport Regimes in Low Temperature Scanning Tunnelling Microscopy" unter Leitung von Dr. Ruslan Temirov am PGI-3: http://www.fz-juelich.de/pgi/pgi-3/EN/UeberUns/Organisation/Gruppe3/gruppe3_node.html

Ansprechpartner:
Dr. Christian Wagner, Peter Grünberg Institut, Functional Nanostructures at Surfaces (PGI-3)
Tel. +49 2461 61-3538
c.wagner@fz-juelich.de

Pressekontakt:
Tobias Schlößer. Unternehmenskommunikation
Tel. +49 2461 61-4771
t.schloesser@fz-juelich.de


Weitere Informationen:

http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2014/14-11-26van-der-waals-kraft.html

Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?
30.03.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Bessere Anwendungsmöglichkeiten für Laserlicht
28.03.2017 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE