Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

UV-Licht-Sensoren aus dem Backofen

19.11.2013
Kieler Forschende revolutionieren Herstellungsverfahren von Nanostrukturen

In Brandmeldern und Wasseraufbereitern verrichten sie ihren lebensrettenden Auftrag, und die Nachfrage nach ihnen steigt in vielen Bereichen wie Umwelt oder Industrie stetig an: UV-Licht-Sensoren.


Schneelandschaft im Ofen: Das neue Herstellungsverfahren von Zinkoxid-Nanostrukturen der Kieler Wissenschaftlerinnen und Wissenschaftler könnte die Produktion von UV-Sensoren revolutionieren.
Foto/Copyright: Schimmelpfennig/CAU

Wissenschaftlerinnen und Wissenschaftlern der Christian-Albrechts-Universität zu Kiel (CAU) ist es nun gelungen, innerhalb weniger Sekunden Nanostrukturen zu „backen“, um damit ultraschnelle Sensoren herzustellen.

Das neue Verfahren verzichtet völlig auf teure Geräte und giftige Chemikalien und ist insbesondere für Unternehmen hochinteressant. Die Forschenden veröffentlichten ihre Arbeit heute (19. November) online in der renommierten Fachzeitschrift „Advanced Materials“.

Eine der größten Herausforderungen beim Bau eines Sensors mit Nanostrukturen sei es, die kleinen elektrischen Kontakte auf den Chips über extrem winzige Strukturen zu verbinden, die gut auf ultraviolettes Licht reagieren, sagt Dawit Gedamu, Erstautor der Studie und wissenschaftlicher Mitarbeiter in der Kieler Arbeitsgruppe „Funktionale Nanomaterialien“.. Die meisten der bisher angewendeten Herstellungsmethoden solcher Strukturen wie die chemische Gasphasenabscheidung oder die Dampf-Flüssigkeits-Feststoff-Methode (VLS) funktionieren nur unter speziellen Bedingungen. Katalytische Teilchen, besondere Substrate, komplexe Temperatur- sowie Atmosphärenerfordernisse und viele andere Faktoren spielen hierbei eine Rolle.
Darüber hinaus ist ein weiterer aufwändiger Schritt nötig, um die erzeugten Nanopartikel in einen Chip einzufügen. Hinzu kommt, dass es bei den verwendeten Halbleitern, unter anderen Silicium und Galliumnitrid, an Lichtempfindlichkeit hapert, und solche Sensoren in rauen Umgebungen nicht reagieren. Viele Nachteile also, die ihre Einsatzmöglichkeiten stark einschränken.

„Äußerst vielversprechend“ für verschiedene Anwendungen hingegen seien Sensoren, die auf Zinkoxid basieren, sagt Dr. Yogendra Kumar Mishra, Hauptautor der Studie. „Zinkoxid-Nanostrukturen sind wegen ihrer UV-Lichtempfindlichkeit und ihren elektrischen und mechanischen Eigenschaften sehr interessant für multifunktionale Anwendungen“, so Mishra. Außerdem ist das Material vergleichsweise günstig und die Partikel einfach herzustellen. Zink als Mineralstoff ist sogar lebenswichtig für den menschlichen Organismus, was die Nano-Mikrostrukturen auch für die Biomedizintechnik interessant macht.

Die Forschenden verbanden also die Elektroden auf einem Chip über zusammenhängende vierarmige Zinkoxid-Kristalle,ein Netzwerk, tausend Mal dünner als ein menschliches Haar. Diese Nano-Tetrapoden, deren Arme sich gegenseitig durchdringen, stellten sie in einem einfachen Brennofen her mittels einer neuen und so genannten Flammentransport-Synthese.
Lediglich hohe Temperaturen unter normalen Bedingungen braucht es, um aus den Zink-Mikropartikeln Nano-Mikrotetrapoden zu erhalten. Der Chip wird dann nur kurz über die Flamme gehalten: „Die Methode erlaubt uns auf diese Weise sogar, die winzigen Zinkoxid-Netzwerke direkt auf einem Chip wachsen zu lassen – und das in Sekundenschnelle!“, berichtet Mishra. Die hohen Temperaturen sorgten dabei für eine dichte Verbindung zwischen den elektrischen Kontakten und den Nanostrukturen, die die Leistung des Sensors erheblich verbessert.

Das Ergebnis: Der von den Kielerinnen und Kielern in einem Schritt hergestellte Sensor reagierte innerhalb von Millisekunden auf die Bestrahlung mit ultraviolettem Licht. Darüber hinaus funktioniert er auch in eher rauen Umgebungen. Die einfachen und günstigen Produktionsbedingungen sowie die Verwendung von puren Zink-Mikropartikeln machen die neue Herstellungsmethode aus den Laboren der schleswig-holsteinischen Landesuniversität hochattraktiv für die Industrie. „Es gab schon erste Nachfragen von Unternehmen aus Schleswig-Holstein. Unsere Grundlagenforschung erzielt also Ergebnisse, die über einen innovativen Technologietransfer in konkrete Anwendungen überführt werden können“, erklärt Professor Rainer Adelung, Leiter der Forschungsgruppe. Einer der nächsten Schritte der beteiligten Materialwissenschaftlerinnen und -wissenschaftler ist es deshalb, die Nano-Tetrapoden in größerem Stil produzieren zu können.

Kurios bei diesem Erfolg: Die Zinkoxid-Nanostrukturen starteten ihre Karriere als Abfallprodukt bei Experimenten mit der herkömmlichen VLS-Methode. Eines Tages untersuchte Yogendra Mishra die Kristalle, die aussehen wie künstlicher Schnee, unter dem Mikroskop: „Ihre besondere Struktur der sich gegenseitig durchdringenden Arme und ihre Eigenschaften als Lichtdetektoren ließen gleich auf das enorme Anwendungspotenzial schließen“, sagt der Wissenschaftler, der als Stipendiat der Alexander von Humboldt-Stiftung in den folgenden Jahren die Methode entwickelte. Denn um die Nano-Tetrapoden kontrolliert herstellen zu können, musste zunächst das richtige Rezept von Temperatur, Mischungsverhältnis von Zinkpartikel und Polymermatrix und anderen Parametern herausgefunden werden.

Nanowissenschaften sind an der Universität Kiel stark vertreten. So wurden Mishras Arbeiten erst durch die Unterstützung zweier großer Sonderforschungsbereiche (SFB) möglich. Fast 200 Wissenschaftlerinnen und Wissenschaftler tüfteln dort zum einen an Molekülen, die sich durch Licht an- und ausschalten lassen, um bestimmte Funktionen erfüllen zu können (SFB 677 „Funktion durch Schalten“). Zum anderen forschen sie an neuen Materialien für Sensoren, die kleinste Magnetfelder im menschlichen Körper messen können sollen (SFB 855 „Magnetoelektrische Verbundwerkstoffe – biomagnetische Schnittstelle der Zukunft“). Gefördert werden sie dabei von der Deutschen Forschungsgemeinschaft (DFG).

Online-Originalpublikation:
Rapid fabrication technique for interpenetrated ZnO nanotetrapod networks for fast UV-sensors; Dawit Gedamu, Ingo Paulowicz, Sören Kaps, Oleg Lupan, Sebastian Wille, Galina Hairdarschin, Yogendra Kumar Mishra, Rainer Adelung; Advanced Materials; DOI: 10.1002/adma.201304363
Bilder stehen zum Download bereit:
http://www.uni-kiel.de/download/pm/2013/2013-347-1.jpg
Bildunterschrift: Hauptautor der Studie Yogendra Kumar Mishra
Foto/Copyright: Schimmelpfennig/CAU

http://www.uni-kiel.de/download/pm/2013/2013-347-2.jpg
Bildunterschrift: Schneelandschaft im Ofen: Das neue Herstellungsverfahren von Zinkoxid-Nanostrukturen der Kieler Wissenschaftlerinnen und Wissenschaftler könnte die Produktion von UV-Sensoren revolutionieren.
Foto/Copyright: Schimmelpfennig/CAU

http://www.uni-kiel.de/download/pm/2013/2013-347-3.jpg
Bildunterschrift: Schematischer Aufbau des innovativen Herstellungsprozesses von Zinkoxid-Nanostrukturen. Zink-Mikropartikel (graue Kügelchen) wandeln sich in der Flamme im Ofen in Nano-Mikrotetrapoden (Mikroskopieaufnahmen) um. Um die Kontakte auf einem Chip darüber zu verbinden, wird dieser lediglich kurz über die Flamme gehalten.
Foto/Copyright: Mishra
http://www.uni-kiel.de/download/pm/2013/2013-347-4.jpg
Bildunterschrift: Schema der Zinkoxid-Nanostrukturen, die zwei Gold-Kontakte auf einem Lichtdetektor verbinden.
Foto/Copyright: Mishra/Advanced Materials

http://www.uni-kiel.de/download/pm/2013/2013-347-5.jpg
Bildunterschrift: Schematische Illustration der Zinkoxid-Nanostrukturen, die durch die Brenner-Flammentransport-Synthese entstehen und als Netzwere zwei Kontakte verbinden.
Foto/Copyright: Mishra/Advanced Materials

http://www.uni-kiel.de/download/pm/2013/2013-347-6.jpg
Bildunterschrift: Mikroskopaufnahme der Zinkoxid-Nanostrukturen, die zwei Kontakte verbinden (von oben nach unten).
Foto/Copyright: Mishra

Kontakt:
Dr. Yogendra Kumar Mishra
Funktionale Nanomaterialien
Institut für Materialwissenschaft
Christian-Albrechts-Universität zu Kiel
Tel.: 0431/880 6195
E-Mail: ykm@tf.uni-kiel.de

Prof. Dr. Rainer Adelung
Funktionale Nanomaterialien
Institut für Materialwissenschaft
Christian-Albrechts-Universität zu Kiel
Tel.: 0431/880 6116
E-Mail: ra@tf.uni-kiel.de


Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski, Text: Denis Schimmelpfennig
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de

Denis Schimmelpfennig | Uni Kiel
Weitere Informationen:
http://www.uni-kiel.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ventile für winzige Teilchen
23.05.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Advanced Materials: Glas wie Kunststoff bearbeiten
18.05.2018 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics