Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ursache der ultraschnellen Manipulation von Domänenwänden entdeckt

08.10.2012
Stipendiat der Graduiertenschule der Exzellenz MAINZ mit internationalem Forscherteam erfolgreich

Ein internationales Forscherteam hat mit dem Freie-Elektronen-Laser FLASH einen Effekt nachgewiesen, der in ferromagnetischen Materialien zu einer schnellen Magnetisierungsänderung führen kann. Dieser Effekt könnte ein Schlüssel zur weiteren Miniaturisierung und Beschleunigung von magnetischen Speichern sein.


Die Magnetkraftmikroskop-Aufnahme einer 10µm mal 10µm großen Kobalt-Platin-Probe zeigt die labyrinthartige Struktur der magnetischen Domänen mit Magnetisierung senkrecht zur Oberfläche (weiß: Magnetisierung zeigt aus der Ebene heraus; braun: Magnetisierung zeigt in die Ebene hinein).

Foto/©: Bastian Pfau, TU Berlin

Aus Mainz waren Forscher der Arbeitsgruppe von Univ.-Prof. Dr. Mathias Kläui vom Institut für Phsyik der Johannes Gutenberg-Universität Mainz (JGU) beteiligt, darunter maßgeblich Felix Büttner, ein Stipendiat der Graduiertenschule der Exzellenz "Materials Science in Mainz" (MAINZ). Die Ergebnisse sind in der aktuellen Ausgabe des Magazins "Nature Communications" veröffentlicht worden.

Bereits bekannt war, dass sich durch Lichtpulse die Magnetisierung eines Materials lokal ändern lässt. Bisher war diese Änderung ortsaufgelöst aber nicht sichtbar, da die konventionellen optischen Methoden keine ausreichend hohe Ortsauflösung erlauben. Weil aber die meisten ferromagnetischen Materialien aus vielen einzelnen, magnetisch unterschiedlich ausgerichteten "Domänen" bestehen, ist gerade die Ursache der Änderung dieser kleinen Domänen und der Grenzflächen zwischen den Domänen (der sogenannten Domänenwände) interessant.

Mit dem Freie-Elektronen-Laser FLASH am DESY Forschungszentrum in Hamburg konnten nun Ergebnisse erzielt werden, die im Einklang mit einem theoretisch vorhergesagten Effekt stehen: Durch den Laser-Beschuss werden hochangeregte Elektronen erzeugt, die sich so schnell durch das Material bewegen, dass sie auch von einer Domäne in eine andersherum magnetisierte Domäne gelangen. Dabei tragen diese Elektronen einen Teil der Magnetisierung durch das Material und können so die lokale Magnetisierung ändern.

Da Domänenwände auch in neuen Speichern wie dem "Racetrack" verwendet werden, sind die Forschungsergebnisse ein Schritt zu einer möglichen Erhöhung der Speichergeschwindigkeit. Der Racetrack-Speicher ist eine Entwicklung von IBM. Er könnte einmal als schnellere und energiesparendere Alternative zu herkömmlichen Arbeitsspeichern oder Festplatten in Computern dienen.

Die Experimente führten die Forscher der Johannes Gutenberg-Universität Mainz (JGU) mit Kollegen der TU Berlin, der Universitäten Hamburg und Paris sowie sechs weiteren Forschungseinrichtungen am Freie-Elektronen-Laser FLASH am DESY-Zentrum in Hamburg durch. Sie untersuchten Proben aus einem Kobalt-Platin-Schichtsystem, dessen nanometerfeine magnetische Domänen labyrinthartige Strukturen bilden (siehe Abbildung).

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de/presse/53396.php

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy