Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Universelles Gesetz für Veränderungen in Werkstoffen gefunden

05.08.2010
In vielen wichtigen Werkstoffen findet man mehrere Phasen – Bereiche, die sich in ihrer Struktur oder in ihrer chemischen Zusammensetzung unterscheiden.

Wird ein solcher Werkstoff erwärmt, können Atome von der einen Phase zur anderen wandern, so dass sich die Verteilung der Phasen ändert – und damit oft die Eigenschaften des Werkstoffs. Nun haben Forschende der Northwestern University aus den USA, des Paul Scherrer Instituts und des dänischen Risø-Forschungszentrums für einen wichtigen Fall einer solchen Veränderung gezeigt, dass es eine universelle Gesetzmässigkeit gibt, die den Vorgang beschreibt. Und zwar für alle Werkstoffklassen – für Metalle genauso wie für Polymere.

Seit Jahren beschäftigt Werkstoffforscher, wie sich ein Werkstoff verändert, der aus mehreren Phasen besteht, wenn man ihn soweit erhitzt, dass die Atome beginnen, sich zu bewegen. Eine Phase ist dabei ein Bereich, der eine bestimmte atomare Struktur oder Zusammensetzung hat. Zum Beispiel sind Eis und flüssiges Wasser zwei verschiedene Phasen. In Werkstoffen bildet oftmals eine Phase stabförmige Strukturen, die von einer anderen Phase umgeben sind, wobei diese stabförmigen Strukturen in kleinere Stücke zerfallen können, was oft zu wesentlichen Änderungen der Materialeigenschaften führt. Man kann sich den Vorgang an Hand eines kontinuierlichen Wasserstroms aus einem Wasserhahn vorstellen, der in einzelne Tropfen zerfällt, wenn der Wasserdruck abfällt.

Nun haben Forschende der Northwestern University (USA) zusammen mit Kollegen des dänischen Risø-Forschungszentrums für nachhaltige Energie und des Paul Scherrer Instituts zwei wichtige Fragen über den Vorgang des Auseinanderbrechens beantwortet: wie er funktioniert und wie lange er dauert.

Die Forschenden konnten dabei zeigen, dass es sich um einen universellen Mechanismus handelt – der Vorgang läuft für alle Werkstoffarten gleich ab, was eine Seltenheit in der Welt der Werkstoffe ist. Die Ergebnisse sind am 1. August in der Online-Ausgabe der Zeitschrift Nature Physics erschienen.

Die internationale Forschungsgruppe unter der Leitung von Peter Voorhees (Northwestern University), an der Erik Lauridsen (Risø) und je ein Doktorand aus beiden Einrichtungen beteiligt waren, hat fünf Tage rund um die Uhr Messungen am Messplatz TOMCAT an der Synchrotron Lichtquelle Schweiz SLS des Paul Scherrer Instituts durchgeführt, wo sie mit Marco Stampanoni und Federica Marone vom PSI zusammengearbeitet haben. Für die Messungen haben sie die tomografische Mikroskopie mit Synchrotronlicht verwendet – und zwar mit einem relativ neuen Setup, der es erlaubt sehr schnell eine Folge von dreidimensionalen Bildern des Inneren eines Materials aufzunehmen und so die zeitlichen Veränderungen der Struktur zu verfolgen. Mit diesem Verfahren haben die Forschenden das Auseinanderbrechen der stabförmigen Phasen beobachtet, wobei sie die Experimente in einem speziellen Ofen durchgeführt haben, in dem die Werkstoffe bei hoher Temperatur untersucht werden konnten.

Die Daten wurden in Echtzeit aufgenommen – die Forschenden beobachteten die Grenzflächen zwischen den Phasen während ein stabförmiger Bereich auseinanderbrach. Nach fünf Tagen hatten sie mehr als zwei Terabyte an Echtzeitdaten zu analysieren.

Dabei haben die Forschenden herausgefunden, dass die Form der Grenzflächen während des Auseinanderbrechens für alle Materialien gleich ist. Eine solche Universalität erlaubt es, entsprechende Vorgänge in einer grossen Vielfalt von Materialien vorherzusagen – etwa in Stahl, Aluminium-Legierungen oder gar in nichtkristallinen Materialien wie Polymeren.

Vorhees wertete die Daten gemeinsam mit Michael Miksis (Northwestern University) und einem weiteren Doktoranden so aus, dass sie zu einer theoretischen Beschreibung des Vorgangs kamen. Sie entwickelten Gleichungen, mit deren Hilfe sie die Zeit berechnen konnten, die es dauert, bis sich zwei Teile einer stabförmigen Phase getrennt haben. Weiter konnten sie zeigen, dass die Kinetik des Vorgangs frühzeitig festlegt wird und dass sie unabhängig vom Material immer gleich ist.

„Wenn es stabförmig ist und es sich durch Diffusion des Material einschnürt, dann wird es durch die universelle Kinetik beschrieben, die wir gefunden haben“ sagt Voorhees.

Der untersuchte Vorgang beeinflusst eine Vielzahl von Werkstoffen, darunter Stahl und Polymere. So werden zum Beispiel viele Metallteile in einem Gussverfahren hergestellt, bei dem flüssiges Metall in eine Form gegossen wird und dort in der Form des Bauteils erstarrt. Wenn die Flüssigkeit erstarrt, entstehen darin baumförmige Strukturen – so genannte Dendriten. Wenn ein Ast eines solchen Dendriten abbricht, können sich die Eigenschaften des Materials ändern. So hat die Luftfahrtindustrie viel Zeit damit verbracht, Verfahren zu entwickeln, bei denen Metall für Turbinenschaufeln erstarrt, ohne dass dieses Problem auftritt. Ein weiteres Beispiel sind Polymersolarzellen, die aus einer komplizierten Mischung zweier Polymere hergestellt werden. Wenn eine solche Mischung erwärmt wird, verändert sie sich in einem Vorgang, bei dem sich stabförmige Strukturen einschnüren. Dabei ändern sich ihre Eigenschaften und damit auch die Effizienz der Solarzelle.

Die Experimente haben vor zwei Jahren stattgefunden, wobei Voorhees und seine Kollegen immer noch dabei sind, die Daten und die anfänglichen Resultate zu analysieren.

„Das war wirklich eine Gemeinschaftsleistung“ erklärt Julie Fife, ehemals Doktorandin bei Voorhees und heute Wissenschaftlerin am PSI „wir haben die Kompetenz international führende Fachleute mit den neuartigen Möglichkeiten am TOMCAT-Messplatz kombiniert und so eine hervorragende Mannschaft aufgestellt. Universell gültige Resultate zu erzielen, die für eine Vielzahl an Materialsystemen gültig sind, war eines der Ziele des Projekts. Der Erfolg ist ein unmittelbares Ergebnis der Zusammenarbeit.“

Text: Emily Ayshford, Northwestern University

Über das PSI
Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Festkörperforschung und Materialwissenschaften, Elementarteilchenphysik, Biologie und Medizin, Energie- und Umweltforschung. Mit 1300 Mitarbeitenden und einem Jahresbudget von rund 260 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.
Kontakt:
Prof. Peter W. Voorhees, Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, USA, Telefon: ++1 847 491 7815, E-Mail: p-voorhees@northwestern.edu

Dr. Julie Fife, Labor für Makromoleküle und Bioimaging, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz, Telefon: ++41 (0)56 310 5840, E-Mail: julie.fife@psi.ch

Prof. Dr. Marco Stampanoni, Institut für Biomedizinische Technik der ETH Zürich und Labor für Makromoleküle und Bioimaging am Paul Scherrer Institut, 5232 Villigen PSI, Schweiz, Telefon: +41 (0)56 310 4724; E-Mail: marco.stampanoni@psi.ch

Originalveröffentlichung
Universality and self-similarity in pinch-off of rods by bulk diffusion, Larry K. Aagesen, Anthony E. Johnson, Julie L. Fife, Peter W. Voorhees, Michael J. Miksis, Stefan O. Poulsen, Erik M. Lauridsen, Federica Marone & Marco Stampanoni, Nature Physics, Advanced Online publication, 1 August 2010, doi:10.1038/nphys1737

Dagmar Baroke | idw
Weitere Informationen:
http://www.psi.ch

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Kampf dem Plastik mit Verpackungen aus Seetang
15.12.2017 | Australisch-Neuseeländischer Hochschulverbund / Institut Ranke-Heinemann

nachricht Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung
14.12.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik