Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Universelles Gesetz für Veränderungen in Werkstoffen gefunden

05.08.2010
In vielen wichtigen Werkstoffen findet man mehrere Phasen – Bereiche, die sich in ihrer Struktur oder in ihrer chemischen Zusammensetzung unterscheiden.

Wird ein solcher Werkstoff erwärmt, können Atome von der einen Phase zur anderen wandern, so dass sich die Verteilung der Phasen ändert – und damit oft die Eigenschaften des Werkstoffs. Nun haben Forschende der Northwestern University aus den USA, des Paul Scherrer Instituts und des dänischen Risø-Forschungszentrums für einen wichtigen Fall einer solchen Veränderung gezeigt, dass es eine universelle Gesetzmässigkeit gibt, die den Vorgang beschreibt. Und zwar für alle Werkstoffklassen – für Metalle genauso wie für Polymere.

Seit Jahren beschäftigt Werkstoffforscher, wie sich ein Werkstoff verändert, der aus mehreren Phasen besteht, wenn man ihn soweit erhitzt, dass die Atome beginnen, sich zu bewegen. Eine Phase ist dabei ein Bereich, der eine bestimmte atomare Struktur oder Zusammensetzung hat. Zum Beispiel sind Eis und flüssiges Wasser zwei verschiedene Phasen. In Werkstoffen bildet oftmals eine Phase stabförmige Strukturen, die von einer anderen Phase umgeben sind, wobei diese stabförmigen Strukturen in kleinere Stücke zerfallen können, was oft zu wesentlichen Änderungen der Materialeigenschaften führt. Man kann sich den Vorgang an Hand eines kontinuierlichen Wasserstroms aus einem Wasserhahn vorstellen, der in einzelne Tropfen zerfällt, wenn der Wasserdruck abfällt.

Nun haben Forschende der Northwestern University (USA) zusammen mit Kollegen des dänischen Risø-Forschungszentrums für nachhaltige Energie und des Paul Scherrer Instituts zwei wichtige Fragen über den Vorgang des Auseinanderbrechens beantwortet: wie er funktioniert und wie lange er dauert.

Die Forschenden konnten dabei zeigen, dass es sich um einen universellen Mechanismus handelt – der Vorgang läuft für alle Werkstoffarten gleich ab, was eine Seltenheit in der Welt der Werkstoffe ist. Die Ergebnisse sind am 1. August in der Online-Ausgabe der Zeitschrift Nature Physics erschienen.

Die internationale Forschungsgruppe unter der Leitung von Peter Voorhees (Northwestern University), an der Erik Lauridsen (Risø) und je ein Doktorand aus beiden Einrichtungen beteiligt waren, hat fünf Tage rund um die Uhr Messungen am Messplatz TOMCAT an der Synchrotron Lichtquelle Schweiz SLS des Paul Scherrer Instituts durchgeführt, wo sie mit Marco Stampanoni und Federica Marone vom PSI zusammengearbeitet haben. Für die Messungen haben sie die tomografische Mikroskopie mit Synchrotronlicht verwendet – und zwar mit einem relativ neuen Setup, der es erlaubt sehr schnell eine Folge von dreidimensionalen Bildern des Inneren eines Materials aufzunehmen und so die zeitlichen Veränderungen der Struktur zu verfolgen. Mit diesem Verfahren haben die Forschenden das Auseinanderbrechen der stabförmigen Phasen beobachtet, wobei sie die Experimente in einem speziellen Ofen durchgeführt haben, in dem die Werkstoffe bei hoher Temperatur untersucht werden konnten.

Die Daten wurden in Echtzeit aufgenommen – die Forschenden beobachteten die Grenzflächen zwischen den Phasen während ein stabförmiger Bereich auseinanderbrach. Nach fünf Tagen hatten sie mehr als zwei Terabyte an Echtzeitdaten zu analysieren.

Dabei haben die Forschenden herausgefunden, dass die Form der Grenzflächen während des Auseinanderbrechens für alle Materialien gleich ist. Eine solche Universalität erlaubt es, entsprechende Vorgänge in einer grossen Vielfalt von Materialien vorherzusagen – etwa in Stahl, Aluminium-Legierungen oder gar in nichtkristallinen Materialien wie Polymeren.

Vorhees wertete die Daten gemeinsam mit Michael Miksis (Northwestern University) und einem weiteren Doktoranden so aus, dass sie zu einer theoretischen Beschreibung des Vorgangs kamen. Sie entwickelten Gleichungen, mit deren Hilfe sie die Zeit berechnen konnten, die es dauert, bis sich zwei Teile einer stabförmigen Phase getrennt haben. Weiter konnten sie zeigen, dass die Kinetik des Vorgangs frühzeitig festlegt wird und dass sie unabhängig vom Material immer gleich ist.

„Wenn es stabförmig ist und es sich durch Diffusion des Material einschnürt, dann wird es durch die universelle Kinetik beschrieben, die wir gefunden haben“ sagt Voorhees.

Der untersuchte Vorgang beeinflusst eine Vielzahl von Werkstoffen, darunter Stahl und Polymere. So werden zum Beispiel viele Metallteile in einem Gussverfahren hergestellt, bei dem flüssiges Metall in eine Form gegossen wird und dort in der Form des Bauteils erstarrt. Wenn die Flüssigkeit erstarrt, entstehen darin baumförmige Strukturen – so genannte Dendriten. Wenn ein Ast eines solchen Dendriten abbricht, können sich die Eigenschaften des Materials ändern. So hat die Luftfahrtindustrie viel Zeit damit verbracht, Verfahren zu entwickeln, bei denen Metall für Turbinenschaufeln erstarrt, ohne dass dieses Problem auftritt. Ein weiteres Beispiel sind Polymersolarzellen, die aus einer komplizierten Mischung zweier Polymere hergestellt werden. Wenn eine solche Mischung erwärmt wird, verändert sie sich in einem Vorgang, bei dem sich stabförmige Strukturen einschnüren. Dabei ändern sich ihre Eigenschaften und damit auch die Effizienz der Solarzelle.

Die Experimente haben vor zwei Jahren stattgefunden, wobei Voorhees und seine Kollegen immer noch dabei sind, die Daten und die anfänglichen Resultate zu analysieren.

„Das war wirklich eine Gemeinschaftsleistung“ erklärt Julie Fife, ehemals Doktorandin bei Voorhees und heute Wissenschaftlerin am PSI „wir haben die Kompetenz international führende Fachleute mit den neuartigen Möglichkeiten am TOMCAT-Messplatz kombiniert und so eine hervorragende Mannschaft aufgestellt. Universell gültige Resultate zu erzielen, die für eine Vielzahl an Materialsystemen gültig sind, war eines der Ziele des Projekts. Der Erfolg ist ein unmittelbares Ergebnis der Zusammenarbeit.“

Text: Emily Ayshford, Northwestern University

Über das PSI
Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Festkörperforschung und Materialwissenschaften, Elementarteilchenphysik, Biologie und Medizin, Energie- und Umweltforschung. Mit 1300 Mitarbeitenden und einem Jahresbudget von rund 260 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.
Kontakt:
Prof. Peter W. Voorhees, Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, USA, Telefon: ++1 847 491 7815, E-Mail: p-voorhees@northwestern.edu

Dr. Julie Fife, Labor für Makromoleküle und Bioimaging, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz, Telefon: ++41 (0)56 310 5840, E-Mail: julie.fife@psi.ch

Prof. Dr. Marco Stampanoni, Institut für Biomedizinische Technik der ETH Zürich und Labor für Makromoleküle und Bioimaging am Paul Scherrer Institut, 5232 Villigen PSI, Schweiz, Telefon: +41 (0)56 310 4724; E-Mail: marco.stampanoni@psi.ch

Originalveröffentlichung
Universality and self-similarity in pinch-off of rods by bulk diffusion, Larry K. Aagesen, Anthony E. Johnson, Julie L. Fife, Peter W. Voorhees, Michael J. Miksis, Stefan O. Poulsen, Erik M. Lauridsen, Federica Marone & Marco Stampanoni, Nature Physics, Advanced Online publication, 1 August 2010, doi:10.1038/nphys1737

Dagmar Baroke | idw
Weitere Informationen:
http://www.psi.ch

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Materialwissenschaft: Widerstand wächst auch im Vakuum
22.06.2017 | Friedrich-Schiller-Universität Jena

nachricht Schnell, berührungslos: Dehnungsmessverfahren für thermisch-mechanisch hoch belastete Werkstoffe
20.06.2017 | Fraunhofer-Institut für Werkstoffmechanik IWM

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie